Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1	$\frac{1}{\alpha} + \frac{1}{\beta} = -\frac{b}{a} = \frac{4}{5}$ $\left(\frac{1}{\alpha}\right) \left(\frac{1}{\beta}\right) = \frac{c}{a} = \frac{1}{5}$	M1	1.1b	3rd
	$\frac{1}{\alpha\beta} = \frac{1}{5} \Rightarrow \alpha\beta = 5$	A1	2.2a	Use the relationship between the roots and coefficients
	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{4}{5} \Rightarrow \alpha + \beta = 4$	A1ft	2.2a	of quadratics to solve problems
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4^2 - 2(5) = 6$	M1	1.2	
	$\alpha^2\beta^2=\left(\alpha\beta\right)^2=5^2=25$			
	$-\frac{q}{p} = 6, \frac{r}{p} = 25 \implies q = -6p, r = 25p \implies px^2 - 6px + 25p = 0$	M1	1.1b	
	$x^2 - 6x + 25 = 0$	A1	2.2a	
	Alternative:			
	Since $root^{-1} \rightarrow root^2$ then let $w = x^{-2}$	M1	1.1b	
	$5x^2 - 4x + 1 = 0, x = w^{-0.5} \implies 5w^{-1} - 4w^{-0.5} + 1 = 0$	A1	2.2a	
	$5w^{-1} + 1 = 4w^{-0.5} \implies 25w^{-2} + 10w^{-1} + 1 = 16w^{-1}$	A1ft	2.2a	
	$25w^{-2} - 6w^{-1} + 1 = 0 \implies w^2 - 6w + 25 = 0$	M1	1.2	
	$x^2 - 6x + 25 = 0$	M1	1.1b	
		A1	2.2a	
		(6)		

(6 marks)

Notes

M1: Attempts at least one equation in α and β

A1: Correct value for $\alpha\beta$

A1ft: Correct value for $\alpha + \beta$ or ft from their $\alpha\beta$

M1: Uses correct identity for $\alpha^2 + \beta^2$

M1: Recognisable attempt to form new quadratic

A1: Correct quadratic or integer multiple including "= 0"

Q Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
$\cosh iz = \frac{e^{iz} + e^{-iz}}{2}$	M1	1.2	3rd Understand the	
$e^{iz} + e^{-iz} = \cos z + i \sin z + \cos(-z) + i \sin(-z)$	M1	1.1b	definitions of hyperbolic	
$\cosh iz = \frac{1}{2} (\cos z + i \sin z + \cos z - i \sin z) = \frac{1}{2} (2 \cos z) = \cos z^*$	A1*	2.1	functions	
	(3)			
2b			4th	
$\sinh iz = i \sin z$	B1	1.2	Know how to use	
$\cosh^2 w - \sinh^2 w = \cos^2 z - i^2 \sin^2 z$	M1	1.1b	sine and cosine in terms of the	
$=\cos^2 z + \sin^2 z = 1*$	A1*	2.1	exponential form	
			of a complex number	
	(3)			
$3\cosh^2 x - 5\sinh x - 1 = 0$			5th	
$3(1+\sinh^2 x) - 5\sinh x - 1 = 0 \implies 3\sinh^2 x - 5\sinh x + 2 = 0$	M1	1.1b	Be able to derive	
$(3 \sinh x - 2)(\sinh x - 1) = 0$	M1	1.1b	or use the logarithmic form	
2	A1	1.1b	of inverse	
$\sinh x = 1, \frac{2}{3}$	AI	1.10	hyperbolic functions	
$x = \operatorname{arsinh} 1$, $\operatorname{arsinh} \frac{2}{3} = \ln(1 + \sqrt{1^2 + 1})$, $\ln(\frac{2}{3} + \sqrt{(\frac{2}{3})^2 + 1})$	M1	3.1		
$= \ln(1 + \sqrt{2}), \ln\left(\frac{2}{3} + \frac{\sqrt{13}}{3}\right)$	A1	2.2a		
	(5)			
(11 marks)				

Notes

- a M1: Uses correct exponential form for cosh
 - M1: One correct use of Euler's formula
 - A1*: Fully correct proof with intermediate step
- **b B1:** $\sin z = i \sin z$ seen or used
 - M1: Replaces w with iz and obtains an expression in z for $\cosh^2 w \sinh^2 w$
 - A1*: Obtains "1" with $\cos^2 z + \sin^2 z$ seen explicitly and no errors
- c M1: Replaces $\cosh^2 x$ with $1 + \sinh^2 x$ to reach 3TQ in $\sinh x$
 - M1: Solves their 3TQ by usual rules
 - A1: Correct values for $\sinh x$
 - M1: Correct use of logarithmic formula for arsinh (or substitutes correct exponential formula for sinh and reaches x = ...)
 - A1: Both correct exact answers and no extra

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3a	$f(x) = \ln(1+x) \implies f'(x) = (1+x)^{-1}$	B1	1.1b	5th
	$f''(x) = -(1+x)^{-2}$ $f'''(x) = 2(1+x)^{-3}$ $f''''(x) = -6(1+x)^{-4}$	M1	1.1b	Find and
	f(0) = 0, $f'(0) = 1$, $f''(0) = -1$, $f'''(0) = 2$, $f''''(0) = -6$			recognise the series expansions
	$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + \frac{x^4}{4!} f''''(0) \Rightarrow$	M1	3.1a	of standard functions
	$f(x) = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4$	A1*	2.1	
		(4)		
3b	$g(x) = \ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$	M1	3.1a	5th Express functions as an infinite
	$= x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 - \left(-x - \frac{1}{2} x^2 - \frac{1}{3} x^3 - \frac{1}{4} x^4 \right)$	B1	1.1b	series using Maclaurin's
	$=2x+\frac{2}{3}x^3$	A1	1.1b	expansion
		(3)		

(7 marks)

Notes

- a B1: Correct f'(x)
 - M1: Obtains three further derivatives of the correct form
 - M1: Finds values for f and their four derivatives at x = 0 and uses a correct Maclaurin expansion
 - A1*: Obtains given answer with no errors seen
- **b** M1: Uses subtraction law of logarithms
 - **B1:** Correct expansion of ln(1-x) seen
 - A1: Correct answer

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4a	p = -1, q = 1 $p = q = -2$ $p = 3, q = 1$	B1 B1 B1	1.1b 1.1b 1.1b	4th Represent transformations in two dimensions using matrices
		(3)		
4b	$n = 1 \Rightarrow \text{LHS} = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}^{1} = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & (1)(r) \\ 0 & 1 \end{pmatrix} = \text{RHS}$ $n = k \Rightarrow \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}^{k} = \begin{pmatrix} 1 & kr \\ 0 & 1 \end{pmatrix}$	В1	1.1b	6th Prove results involving powers of matrices using induction
	$n = k + 1 \implies \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}^{k} = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & kr \\ 0 & 1 \end{pmatrix}$	M1	3.1	
	$= \begin{pmatrix} 1 & kr+r \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & (k+1)r \end{pmatrix}$	M1 A1	1.1b 1.1b	
	$= \begin{pmatrix} 1 & (k+1)r \\ 0 & 1 \end{pmatrix}$			*
	Statement shown to be true for $n = 1$ and true for $n = k + 1$ when assumed true for $n = k$. Hence true for all $n \in \mathbb{Z}^+$	A1*	2.1	
		(5)		
4c	$\mathbf{B} = \begin{pmatrix} 1 & -10 \\ 0 & 1 \end{pmatrix}$	B1	1.1b	5th Represent successive
	$\mathbf{C} = \mathbf{B}\mathbf{A} = \begin{pmatrix} 1 & -10 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}$ $= \begin{pmatrix} 4 & -30 \\ 0 & 3 \end{pmatrix}$	M1 A1	1.1b 1.1b	transformations in two dimensions using matrices
	(U 3)			
		(3)		

4d	$\det \mathbf{BA} = 12 \text{ so area } S = 39 \div 12$	M1	3.1a	5th
	= 3.25 oe (square units)	A1	2.2a	Represent successive transformations in two dimensions using matrices
		(2)		

(13 marks)

Notes

- a Correct values for both p and q for each mark
- **b B1:** Correctly shows LHS = RHS for n = 1
 - M1: Attempts induction step
 - M1: Recognisable attempt at matrix multiplication
 - A1: Correct matrix
 - A1: Final matrix achieved and full conclusion or narrative
- c B1: Correct matrix B
 - M1: Recognisable attempt at multiplication of matrices in the correct order
 - A1: Correct matrix
- **d** M1: Divides 39 by correct (non-zero) determinant for their matrix (could just use det A since det B = 1)
 - A1: 3.25 or equivalent

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	$d = \frac{1}{2} \operatorname{arsinh} \left(\frac{9^2}{16} \right)$	M1	3.4	5th Be able to derive
	= 1.162 (m)	A1	1.1b	or use the logarithmic form of inverse hyperbolic
		(2)		functions
		(2)		
5b	$y = \frac{1}{2} \operatorname{arsinh}\left(\frac{x^2}{16}\right) \Rightarrow x^2 = 16 \sinh 2y$	B1	3.4	6th Solve problems
	$V = (\pi) \int x^2 \mathrm{d}y$	M1	3.3	involving volumes of revolution
	$\int \sinh 2y dy \Rightarrow \frac{1}{2} \cosh 2y$	M1	1.1b	
	$V = 8\pi \left[\cosh 2y\right]_0^{"1.162"} = 8\pi \left(\cosh(2("1.162")) - 1\right)$	M1	3.4	
	= awrt 104 or 105 (m ³)	A1	1.1b	
		(5)		
5c	$y = kx^2$	M1	3.5	5th
	$k = \frac{"1.162"}{81} = 0.0143$	A1ft	2.2a	Model problems using volumes of revolution
		(2)		

(9 marks)

Notes

a M1: Uses model to obtain a numerical expression for d (could be implied)

A1: awrt 1.162

b B1: Correctly makes x^2 the subject of the model equation

M1: Correct method for volume of revolution about y-axis allowing for incorrect or missing π

M1: $\int \sinh 2y \, dy = k \cosh 2y$

M1: Correct use of "1.162" and 0 as limits

A1: awrt 104 or 105

c M1: Suggests correct form of quadratic model

A1ft: Correct value for k or ft for "1.162" \div 81 correct to 3 sf

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	P is (12, 0)	B1	2.2a	4th
				Know how to sketch standard polar curves
		(1)		
6b	$\frac{\mathrm{d}}{\mathrm{d}\theta} (r\sin\theta) = 0$	M1	1.2	6th Know how to find
	$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(6\sin\theta + 6\sin\theta \cos\theta \right) = 6(\cos\theta + \cos^2\theta - \sin^2\theta \right)$	M1 A1	3.4 1.1b	tangents parallel and perpendicular to the initial line
	$\cos \theta + \cos^2 \theta - (1 - \cos^2 \theta) = 0$ $2 \cos^2 \theta + \cos \theta - 1 = 0$ $(2 \cos \theta - 1)(\cos \theta + 1) = 0$	M1	1.1b	*
	$\cos \theta = \frac{1}{2} \cos \theta = -1$	M1	1.1b	
	$\theta = \frac{\pi}{3}, -\frac{\pi}{3}, \pi$	A1	2.2a	
	$\Rightarrow (9, \frac{\pi}{3}), (9, -\frac{\pi}{3}), (0, \pi)$	A1	2.2a	
		(7)		

6с	Area bounded by curve $= 2 \int_0^{\pi} \frac{1}{2} r^2 d\theta$ or $\int_0^{2\pi} \frac{1}{2} r^2 d\theta$ $= 36 \int_0^{\pi} (1 + 2 \cos\theta + \cos^2\theta) d\theta$	M1	3.3	7th Know how to find compound areas enclosed by polar curves
	$= 36 \int_0^{\pi} (1 + 2 \cos \theta + \frac{1}{2} + \frac{1}{2} \cos 2 \theta) d\theta$	M1	3.4	oux ves
	$=36\left[\frac{3}{2}\theta+2\sin\theta+\frac{1}{4}\sin2\theta\right]_0^{\pi}$	M1 A1	1.1b 1.1b	
	$OQ = -\frac{3}{2} \sec \pi \left(= \frac{3}{2} \right)$	B1	2.2a	
	$AQ = 9' \times \sin \frac{\pi}{3} = \frac{9\sqrt{3}}{2}$	M1	2.2a	
	Area wasted = $\left(\frac{3}{2} + 2\right) \left(2 \times \frac{9\sqrt{3}}{2}\right) - 36\left(\frac{3\pi}{2} + 0 + 0 - (0)\right)$	M1	3.3	
	$\frac{243\sqrt{3}}{2} - 54\pi(\text{cm}^2)$	A1	1.1b	
		(8)		

(16 marks)

Notes

- **a B1:** (12, 0) only (but allow mark for r = 12, $\theta = 0$)
- **b** M1: Uses $\frac{d}{d\theta} (r \sin \theta) = 0$
 - M1: Uses model and differentiates to obtain correct form of derivative
 - A1: Correct derivative
 - **M1:** Uses $\sin^2 \theta = 1 \cos^2 \theta$ to obtain 3TQ
 - M1: Solves quadratic by usual rules
 - **A1:** At least two correct values for θ
 - A1: Fully correct coordinates and no extra
- c M1: Applies area formula to model (allow this mark for half these integrals i.e. half the bounded area)
 - **M1:** Uses model and replaces $\cos^2\theta$ with $\frac{1}{2} + \frac{1}{2}\cos 2\theta$ condoning sign errors
 - M1: Integrates to obtain expression of the correct form
 - A1: Correct integration
 - B1: Correct OQ in any form
 - M1: Correct attempt at AQ (could be doubled at this stage)

M1: Fully correct method for shaded area; i.e. their rectangle area – their area bounded by curve

A1:
$$\frac{243\sqrt{3}}{2} - 54\pi$$
 only

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	$t \frac{dP}{dt} - P - t^2 \ln t + P_0 = 0 \Rightarrow \frac{dP}{dt} - \frac{1}{t} P = t \ln t - \frac{P_0}{t}$	В1	3.1a	8th Use first order
	$IF = e^{\int -\frac{1}{t} dt}$	M1	1.2	differential equations to model problems
	$= e^{-\ln t} = \frac{1}{t}$	A1	2.2a	in a wide range of contexts
	$\frac{1}{t} P = \int (\ln t - \frac{P_0}{t^2}) \mathrm{d}t$	M1	1.1b	
	$\int \ln t \mathrm{d}t \Rightarrow t \ln t - t$	M1	1.1b	
	$\frac{1}{t} P = t \ln t - t + \frac{P_0}{t} (+ c)$	A1	1.1b	
	$P = t^2 \ln t - t^2 + P_0 + ct$			
	100 days: $t = 1$, $P = 1.5$, $P_0 = 2.5 \implies 1.5 = -1 + 2.5 + c \implies c = 0$	M1	3.3	
	$P = t^2 \ln t - t^2 + 2.5 = t^2 (\ln t - 1) + 2.5*$	A1*	2.1	
		(8)		
7b	$\frac{\mathrm{d}P}{\mathrm{d}t} = 2t \left(\ln t - 1\right) + t^2 \left(\frac{1}{t}\right) \text{ oe}$	M1 A1	3.4 1.1b	8th Use first order
	$2t \ln t - t = 0$ $t (2 \ln t - 1) = 0$			differential equations to model problems
	$(t \neq 0) \ln t = \frac{1}{2} \implies t = e^{0.5} (= 1.6487)$	M1	2.2a	in a wide range of contexts
	$P = (e^{0.5})^2 (\ln(e^{0.5}) - 1) + 2.5 = 2.5 - 0.5e = 2.5 - 1.359$			
	$= 1.14 \Rightarrow 114 \text{ (birds)}$	A1	3.4	
		(4)		
7c	[$(t > e^{0.5})$ As t increases, P increases (at an increasing rate)] The model is unrealistic as it predicts a limitless increase in the bird population oe	B1	3.5b	8th Use first order differential equations to model problems in a wide range of contexts
		(1)		
				(13 marks)

Notes

a B1: Uses model and correctly divides through by t

M1: Correct method for integrating factor

A1: Correct integrating factor

M1: Applies IF \times $B = \int (\text{IF} \times Q) dt$

M1: Attempts integration of $\ln t$ by parts in the correct direction

A1: Fully correct integration

M1: Uses model to substitute and obtain c

A1*: Correct proof with no errors seen

b M1: Attempts differentiation of model equation using product rule

A1: Correct differentiation

M1: Sets derivative = 0 and reaches t = ...

A1: 114 only

c B1: Statement that makes clear the model is unrealistic with a suitable supporting reason

TOTAL FOR PAPER IS 75 MARKS