Further Mathematics Advanced Paper 2: Core Pure Mathematics

Paper 2 Core Pure Mathematics	
You must have:	
Mathematical Formulae and Statistical Tables,	
calculator	
Time	1 hour 30 minutes
Name	
Class	
Teacher name	
Total marks	/75

Answer ALL questions.

 $f(z) = z^4 - 3z^3 - 2z^2 + 10z - 12$

1

The roots of f(z) = 0 are plotted as points on an Argand diagram. The points are connected by straight line segments so that the points form the vertices of a kite.

Given that z = 1 + i is a root of f(z), use algebra to find the vertices and hence area of the kite in square units.

(9)

(Total for Question 1 is 9 marks)

2 Find the equations of any invariant lines through the origin for the transformation represented by the matrix

$$\begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$$

(6)

(Total for Question 2 is 6 marks)

3 a Use the identity

$$2r + 1 = (r + 1)^2 - r^2$$

and the method of differences to show that

$$\sum_{r=1}^{n} r = \frac{1}{2} n \left(n + 1 \right)$$

(5)

b Prove by induction that

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

(5)

c Hence, given that

$$\sum_{r=1}^{n} r^3 = f\left(\sum_{r=1}^{n} r\right)$$

write down the function f(x).

(1)

(Total for Question 3 is 11 marks)

$$\mathbf{M} = \begin{pmatrix} 1 & -2k & -1 \\ k & 2 & 1 \\ 5 & 0 & 1 \end{pmatrix}$$

a By finding and solving an equation, show that the matrix **M** is singular when k = 3 or k = p where p is a constant to be found.

 $\mathbf{A} = \begin{pmatrix} 1 & -6 & -1 \\ 3 & 2 & 1 \\ 5 & 0 & 1 \end{pmatrix} \tag{3}$

b Given that x, y and z are variables and \mathbf{v} is a constant vector with three components, explain clearly why the system of equations given by

$$\mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{v}$$

cannot have the solution

4

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{A}^{-1} \mathbf{v}$$

(1)

Three planes have the equations

$$x-6y-z-5=0$$

$$3x + 2y + z + 1 = 0$$

$$5x + z - 1 = 0$$

c Find the common line of intersection of the three planes, giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ where \mathbf{a} and \mathbf{b} are vectors to be found.

(3)

d State the geometrical configuration of the planes.

(1)

(Total for Question 4 is 8 marks)

5

5 a Explain clearly why

$$\int_{0}^{7} \frac{\mathrm{d}x}{x^2 - 9}$$

is an improper integral.

(1)

b Giving your answer in its simplest form, find

$$\int \frac{\mathrm{d}x}{4x^2 + 8x + 13}$$

(4)

c Hence prove that

$$\int_{-\frac{5}{2}}^{\infty} \frac{\mathrm{d}x}{4x^2 + 8x + 13} = \frac{\pi}{8}$$

(2)

(Total for Question 5 is 7 marks)

6 The curve *C* has the equation

$$y = \frac{\operatorname{artanh} 2x}{8x^2 + 1} \qquad |x| < \frac{1}{2}$$

Find the gradient of the tangent to C at the point where $x = \frac{1}{4}$ giving your answer in the form

 $\frac{1}{9}$ (a + b ln3) where a and b are integers to be found.

(6)

(Total for Question 6 is 6 marks)

7 A field contains two underground electricity transmission cables.

One cable is modelled as the straight line l_1 that passes through the points (1, 3, -2) and (4, 7, -2) relative to a fixed origin O, with units in metres.

a Find the vector equation of the cable as given by the model.

(2)

The second cable is modelled by the straight line l_2 with equation

$$\mathbf{r} = -4\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \mu (2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$$

b Prove that l_1 and l_2 are skew lines.

(4)

A small device that measures the electrical current is attached to the second cable and its position is modelled as the point P(-6, -1, 0).

c Verify that the device is modelled as being located on line l_2 .

(1)

New safety rules mean that if any device on a cable is positioned within 3.75m of any other cable, it must be removed.

d Find the shortest distance from point P to the line l_1 , giving your answer in metres to three significant figures.

(5)

e Comment on the reliability of using the answer to part d to determine whether the device should be removed, explaining your reasoning clearly.

(2)

(Total for Question 7 is 14 marks)

8 a Show that $y = kx\sin x$ is a particular integral of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = \cos x$$

where k is a constant to be found.

(4)

Military aircraft pilots experience g-forces, which are accelerations given as multiples of the acceleration due to gravity, g.

At a training centre, pilots are revolved at an increasing rate for 30 seconds in a simulator to investigate the g-force that the pilots experience.

A scientist models the situation using the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + y = \cos t \qquad 0 \leqslant t \leqslant 0.5$$

where *y* is the coefficient of g of the resultant g-force and *t* is the time in minutes from when the simulator starts to revolve.

b Given that when t = 0, y = 1 and $\frac{dy}{dt} = 7$, find the particular solution of the differential equation.

(6)

Statistics reveal that the model is accurate but the scientist wants to simplify this particular solution.

c Given that t is sufficiently small, use small angle approximations to show that a simplified solution of the differential equation can be obtained, giving your answer in the form y = mt + c where m and c are constants to be found.

(2)

The scientist will not use the simplified solution if the absolute percentage error in using it, compared to the original solution, exceeds 5%.

d Given that the solutions differ most at the end of the model's time period, determine whether the scientist will use the simplified solution.

(2)

(Total for Question 8 is 14 marks)

TOTAL FOR PAPER IS 75 MARKS

