Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	Uses $F = ma$ to form $Ft = m(v - u)$	M1	1.1a	3rd
	Explains that units for impulse of Ns implies $Ft = I$ thus producing given impulse formula.	A1	2.4	Derive the formulae for momentum and impulse
		(2)		
1b	Uses impulse equation to obtain, $1.2 = m_1(3-1)$	M1	1.2	3rd
	Gives correct answer $m_1 = 0.6$ (kg)	A1	1.1b	Derive the formulae for momentum and impulse
		(2)		
1c	NB See alternative method using impulse in Notes below			5th
	Forms appropriate conservation of linear momentum equation (one side correct)	M1	3.3	Use the principle of the conservation of
	Forms fully correct equation obtaining $3m_1 - m_2 = m_1 + 3m_2$	M1	1.1a	momentum in simple one
	Gives correct answer $m_2 = 0.3$ (kg)	A1ft	1.1b	dimensional problems
	Allow ft from incorrect answer to part b .			-
		(3)		

(7 marks)

Notes

- **a** M1: Uses F = ma with suvat equation v = u + at to eliminate a to form Ft = m(v u)
 - A1: Justifies why Ft means impulse, I, either by using clear units for impulse argument or states knowledge of I = Ft formula
- **b** M1: Applies impulse equation with correct values substituted
 - A1: States correct value (accept missing units)
- c Alternative method using impulse
 - M1: Forms impulse equation $1.2 = m_2(3 + 1)$ with one side correct
 - M1: Forms fully correct impulse equation
 - A1: Missing value correctly calculated

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	States extension at equilibrium is 4 cm	B1	1.1b	4th
	Uses Hooke's Law to calculate upward force, $T = \frac{\lambda}{0.12} \times 0.04$	M1	3.3	Calculate the tension in a string or spring using
	Uses N2L to calculate downward force, $F = 0.2 gN$ oe	B1	1.1b	Hooke's law
	Thus equates to find λ , $\frac{\lambda}{0.12} \times 0.04 = 0.2g \Rightarrow \lambda = 5.88$ AG	A1	1.1b	
		(4)		
2b	Defines resistance force due to friction as $F = 0.2 \mu g = 0.14 g$	M1	1.1a	5th
	Uses Hooke's Law to calculate restorative force, $R = \frac{their \lambda}{0.12}x$	M1	1.1b	Solve equilibrium problems involving Hooke's law in context
	Hence equates to give correct value, $x = 0.028 \mathrm{m}$ oe	A1	1.1b	law in context
		(3)		
2c	Gives a suitable explanation	B1	2.4	5th
	E.g. friction acts to a maximum to resist the motion and so beyond this <i>x</i> value the restorative force would exceed the resistance force.			Solve equilibrium problems involving Hooke's law in context
		(1)		

(8 marks)

Notes

- **a** Award B0M1M0A0 if equation $\frac{\lambda}{l}x = ma$ seen with no further working other than answer given.
 - B1: States extension as 4 cm or uses 0.04 in Hooke's Law calculation
 - M1: Forms an expression in λ for restorative force due to elasticity using their extension value
 - M1: Calculates force due to gravity correctly accept 0.2 g or AWRT 1.96
 - A1: Must show equating of forces before quoting given answer
- **M1:** States or uses resistance force due to friction as 0.14 g or AWRT 1.372
 - M1: Forms an expression in x for restorative forec due to elasticity using their λ value
 - **A1ft:** States correct value for x ie AWRT 0.028 or 2.8 cm oe
- c B1: Any explanation which correctly describes the limited nature of the force due to friction

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3	States or uses correct equation for Power, $P = F \times v$	M1	1.2	5th
	Thus calculates driving force, $F = \frac{8.1 \times 10^6}{30} = 2.7 \times 10^5 \text{ N}$	A1	1.1b	Use the formula for power in problem solving
	Uses N2L to model the train, their $F - R = 4.2 \times 10^5 \times 0.3$	M1	3.3	
	States correct value, $R = 1.4 \times 10^5 \mathrm{N}$	A1	1.1b	
		(4)		

(4 marks)

Notes

M1: Correct equation for power stated or used

A1: Calculates correct value for driving force (units not required)

M1: Applies N2L (must use resultant force) with their calculated driving force value

A1ft: Finds correct value AWRT 1.4×10^5 (units not required)

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4a	Resolves vertically to slope to express maximum resistance	B1	3.3	4th
	force due to friction, $R = \mu mg \cos 30 = \frac{\sqrt{3}}{4} mg$ Uses trigonometry and knowledge of PE formula to form, PE Lost = $mgd \sin 30 = \frac{1}{2} mgd$	M1	1.1a	Be able to include GPE when applying the work–energy principle
	Forms expression for KE Gained, $\frac{1}{2}m(v^2-0.1^2)$	M1	3.3	
	Uses work energy principle, cancelling m , to give,	M1	3.4	
	$\frac{\sqrt{3}}{4}gd = \frac{1}{2}gd - \frac{1}{2}\left(v^2 - \frac{1}{100}\right) \text{oe}$			
	Shows clear steps leading to given final equation.	A1	2.1	
		(5)		
4b	Substitutes ν into equation to find slide length, $d = 3.04 \mathrm{m}$	B1	1.1b	4th
				Be able to include GPE when applying the work–energy principle
		(1)		
4c	Assumes friction is eliminated thus states this would mean PE	B1	2.1	5th
	loss equals KE gain. Calculates KE Gained = $\frac{1}{2}m(5^2 - 0.1^2) = 12.495m$	M1	1.1b	Understand and use the principle of the conservation of
	Calculates PE Lost = $3.04 \times 9.8 \times m \times \sin 30 = 14.896m$	M1	1.1b	mechanical energy
	Energy lost, so contradiction, thus friction not eliminated	B1	2.1	
		(4)		
				(10 marks)

Notes

- a B1: Expresses or uses resistance force due to friction as $\mu mg \cos 30$ or $\frac{\sqrt{3}}{4}mg$ seen
 - **M1:** Expresses or uses PE Lost as $mgd \sin 30$ or $\frac{1}{2}mgd$ seen
 - **M1:** Expresses or uses KE Gained = $\frac{1}{2}m(v^2 0.1^2)$
 - M1: Equates their expressions using the work-energy principle correctly
 - **A1:** Shows how to rearrange to find the given expression. Must show at least one step between their expression and the given expression.
- **b B1:** Calculates correct value by substitution including units AWRT 3.04 m
- **c B1:** States basis of proof either by using conservation of mechanical energy or with reasoned use of the work–energy principle
 - M1: Expresses KE gained correctly in terms of m
 - M1: Expresses PE Lost correctly in terms of m
 - A1ft: Draws conclusion that energy is lost by comparison of their values

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Uses impulse equation in vector form to obtain,	M1	1.2	4th
	$4m\mathbf{i} - 18m\mathbf{j} = m(v - (2\mathbf{i} + 4\mathbf{j}))$			Extend the definition of
	Hence obtains $v = 6\mathbf{i} - 14\mathbf{j}$	A1	1.1b	momentum and impulse to two
	States clearly that $v = 2u_2$	M1	1.1a	dimensions
	Completes proof with clear explanation. E.g. as v is a scalar multiple of u_2 then they are parallel.	A1	2.4	
		(4)		
5b	Uses conservation of linear momentum formula in vector form	M1	3.3	6th
	obtaining, $m(3\mathbf{i} - 7\mathbf{j}) + 3m(5\mathbf{i} + 8\mathbf{j}) = 4m\mathbf{v}$ Hence finds $\mathbf{v} = \frac{9}{2}\mathbf{i} + \frac{17}{4}\mathbf{j}$ oe	A1	1.1b	Use the impulse/ momentum principle in vector form
	Attempts to find magnitude of their v	M1	1.1a	
	Calculates correct speed = $\frac{\sqrt{613}}{4} \text{m s}^{-1} \text{ AWRT 6.2 (m s}^{-1})$	A1	1.1b	
		(4)		

(8 marks)

Notes

a M1: Shows or uses Impulse equation in vector form

A1: Solves to find correct v vector (accept in column vector format)

M1: Checks to see if, or shows that, u_2 and their v vector are scalar multiples

A1: Uses any acceptable conclusion for proof of parallel

M1: Shows or applies Conservation of linear momentum equation in vector form

A1: Solves to find correct v vector (allow column format or components given seperately clearly labelled)

M1: Uses correct method to find the magnitude of their v vector

A1ft: Calculates correct speed $\frac{\sqrt{613}}{4}$ m s⁻¹ or AWRT 6.2

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	Assuming direction of A unchanged after impact:			5th
	Uses conservation of linear momentum to form equation for impact between A and B , giving $4mu = 7mv_B + 4mv_A$ oe	M1	3.3	Solve problems involving successive
	Uses NEL to form second equation, giving $v_B - v_A = ue$	M1	3.3	collisions of pairs of spheres in one
	Solves simultaneously to form an expression for velocity of <i>B</i> after impact with <i>A</i> , giving, $v_B = \frac{4}{11}u(1+e)$	M1	1.1a	dimension
	Uses v_B to determine the given expression for velocity of B after colliding with the wall, ω .	A1	3.3	
	(a step showing the expression $\omega = \frac{1}{6}e \times v_B$ must be evident)			
		(4)		
6b	Determines correct expression for velocity of A after first	M1	3.1b	6th
	colliding with B, $v_A = v_B - ue = \frac{1}{11}u(4-7e)$			Solve problems involving
	Deduces B will also collide again with A if $\omega > -v_A$ (negative sign present dependent on direction of v_A in model).	В1	2.2a	successive collisions including collisions with
	Thus forms quadratic inequality:	M1	1.1a	walls
	$\frac{2}{33}ue(1+e) > -\frac{1}{11}u(4-7e) \Rightarrow 2e^2 - 19e + 12 > 0$			
	Hence states conditions $e < \frac{19 \pm \sqrt{265}}{4} = 0.68$ to 2dp or $e > 8.8$	A1	1.1b	
	Thus gives final answer in context $0 < e < \frac{19 \pm \sqrt{265}}{4}$ oe	A1	3.2a	
		(5)		

6c	Uses given $v_A = 0$ to state $e = \frac{4}{\pi}$	B1	2.2a	5th
	Uses correct formula for loss in KE = $\frac{1}{2}m(v_B^2 - \omega^2)$	M1	1.2	Calculate the change in kinetic energy as a result of a collision
	Thus substitutes $e = \frac{4}{7}$ to find,	A1	1.1b	
	KE Lost $=\frac{1}{2}mu^2\left[\left(\frac{4}{7}\right)^2 - \left(\frac{8}{147}\right)^2\right] = \frac{3496}{21609}mu^2$			
		(3)		

(12 marks)

Notes

Alternative: Assuming direction of A changed after impact,

a M1: Uses conservation of linear momentum to form equation, $4mu = 7mv_B - 4mv_A$

M1: Uses NEL to form second equation, $v_B + v_A = ue$

M1: As explained above

A1: As explained above

b M1: Uses *their* COL and NEL equations to determine an expression for v_A with alternative that if direction of A after impact is changed then correct expression is $v_A = \frac{1}{11}u(7e-4)$

B1: Alternative: Deduces, by stating or using, that B will also collide again with A (if direction of A after first impact is changed) then $\omega > v_A$

M1: Forms quadratic using their v_A and given ω (allow $2e^2 - 19e + 12 = 0$ ie missing inequality)

A1ft: Solves their quadratic giving both roots

A1: Correct answer only

c B1: Correct exact e value only

M1: Correct method to find the KE lost in the impact.

A1: Correct solution only

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	Correctly calculates EPE gained = $\frac{20}{0.5} (0.25^2 - 0.05^2) = 2.4 \text{ J}$	В1	3.1b	6th Know the conditions for the conservation of
	Correctly calculates PE Lost = $1.2 \times 9.8 \times 0.2 = 2.352 \text{ J}$	B1	1.1b	
	Correctly expresses KE Lost = $0.5 \times 1.2 \times u^2 = 0.6u^2$	M1	1.1b	mechanical energy with EPE included
	Uses conservation of mechanical energy to form a correct expression, $2.4 = 2.352 + 0.6u^2$	M1	3.3	moradod
	Solves to show $u = 0.2828$ AG	A1	1.1b	
		(5)		
7b	Calculates KE Lost = 0.6 J	B1	3.1b	7th
	Forms expression in terms of <i>d</i> for PE Lost = $1.2g(d - 0.3)$	M1	3.3	Solve string/spring
	Forms expression in terms of d for EPE gained	M1	3.3	problems involving work
	$= 40((d-0.25)^2 - 0.05^2)$	N. 41 1	2.4	and energy in familiar contexts
	Uses conservation of mechnical energy and rearranges to create the quadratic, $40d^2 - 31.76d + 5.328 = 0$	M1	3.4	
	Solves and selects correct value in context $d = 0.55 \mathrm{m}$	A1	3.2a	
		(5)		
7ci	Uses $d = 54$ to calculate EPE gained = 3.264 J	B1	1.1b	7th
	Similarly calculates total loss in KE amd PE = 3.4224 J	B1	1.1b	Solve string/spring
	Thus extra energy loss = $0.158 \mathrm{J}$ AWRT 0.16	A 1	1.1b	problems involving work
7cii	Gives valid comment. E.g. additional energy loss is likely to be due to work done against air resistance.	B1	3.5a	and energy in familiar contexts
		(4)		
	1	,		(14 marks)

Notes

a B1: Correct value only (units not required)

B1: Correct value only (units not required)

M1: Correct expression only

M1: Uses correct method to form the conservation of mechanical energy equation with their values

A1: Correct solution only

Alternative: Using x as distance below starting position when first coming to rest

b B1: Correct value for KE Lost only (units not required)

M1: Alternative: Forms expression in terms of x for PE Lost = 1.2gx = 11.76x

M1: Alternative: Forms expression in terms of x for EPE gained

$$=40((x+0.05)^2-0.05^2)$$

M1: Uses correct method for conservation of mechanical energy to form quadratic equation Alternative: $40x^2 - 7.76x - 0.6 = 0$

A1: Correct solution only AWRT 0.55 m oe (units should be given)

Alternative: Solves and uses correct x value (x = 0.253...) to find d cao must be given for d

ci B1: Correct value only (units not required) AWRT 3.26

B1: Correct value only (units not required) AWRT 3.42

A1: Correct solution only

cii B1: Provides a valid comment that would account for energy loss

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
8a	Uses geometry to establish that v_Q , is inclined at θ° away from	B1	2.2a	8th
	the vertical. Hence uses that momentum perpendicular to line of centres is unchanged to form, $u\sin\theta = v_Q\cos\theta$	M1	3.3	Solve a wide range of problems involving oblique impacts between two spheres
	Uses trigonometry to deduce component of v_Q in the direction of the line of centres, $v_{Qx} = v_Q \sin \theta$	M1	1.1a	viio spiisso
	Thus states $v_{Qx} = \frac{u \sin^2 \theta}{\cos \theta}$	M1	3.4	
	Uses NEL along line of centres to form $v_{Px} + v_{Qx} = 3ue \cos \theta$	M1	3.3	
	Uses conservation of momentum parallel to line of centres (x direction) and simplifies, $-0.2u \cos \theta = -0.5v_{Px} + 1.2v_{Qx}$	M1	3.3	
	Solving simultaneously to eliminate v_{Px} and substituting for v_{Qx} forms equation in terms of e , u and θ only,	M1	3.4	
	$\frac{3.4u\sin^2\theta}{\cos\theta} = 3ue\cos\theta - 0.4u\cos\theta$			
	Thus obtains $e = \frac{3.4 \tan^2 \theta + 0.4}{3}$ so for $\tan \theta = \frac{1}{6}$, $e = \frac{89}{540}$ AG	A1	1.1b	
		(8)		
8b	Using ω for the speed of Q after impacting with wall, forms equation relating speeds parallel to the wall, $v_B \sin \theta = \omega \cos \alpha$	M1	3.3	7th Solve a wide
	Also uses NEL perpendicular to the wall, $\omega \sin \alpha = \frac{1}{5} e v_B \cos \theta$	M1	3.3	range of problems involving oblique impacts with a surface
	Thus shows $\tan \alpha = \frac{1}{5}e \cot \theta$	A1	1.1a	
	Hence finds $\tan \alpha = \frac{89}{2700} \times 6 = \frac{89}{450}$	A1	1.1b	
		(4)		
	I.			(12 marks)

Notes

- a B1: Use of v_Q inclined at θ° away from the vertical stated or seen.
 - M1: Equates momentum in direction perpendicular to the line of centres correctly (allow $v_O \cos \delta$ ie not θ)
 - M1: Uses trigonometry to define x direction (line of centres) component of v_0
 - M1: Combines to find correct expression for v_Q in x direction (line of centres) in terms of θ (and δ)
 - M1: Uses correct method for NEL in x direction (along line of centres)
 - M1: Uses correct method for COL momentum in x direction (parallel to line of centres)
 - M1: Determines correct equation in terms of e, u and θ only (or just e and θ only)
 - A1: Shows clearly substitution of $\tan \theta = \frac{1}{6}$ to find correct exact value as given
- **b** M1: Uses correct method to equate speeds in the direction parallel to the wall
 - M1: Uses correct method for NEL for speeds perpendicular to the wall
 - **A1ft:** Uses *their* two expressions to relate $\tan \alpha$ to e and $\tan \theta$
 - A1: Correct answer only