Further Mathematics Advanced Paper 3C: Further Mechanics 1

Paper 3C Further Mechanics 1	
You must have:	
Mathematical Formulae and Statistical Tables,	
calculator	
Time	1 hour 30 minutes
Name	
Cl	
Class	
Teacher name	
Total marks	/75

Whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m\,s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

Answer ALL questions.

- A body of mass m is moving with an initial velocity u and is then acted upon by a constant force F for time t. This results in a constant acceleration a producing a final velocity v such that v = u + at. Using Newton's second law, and the usual units for impulse,
 - a Derive the formula for impulse, I = m(v u).

(2)

Two spheres, A and B, of masses m_1 and m_2 kg respectively, are travelling towards each other in a straight line along a smooth horizontal surface, so that they collide directly.

Before the collision, A has a speed of $3 \,\mathrm{m \, s^{-1}}$ and B has a speed of $1 \,\mathrm{m \, s^{-1}}$.

After the collision A continues in the same direction but at a speed of $1 \,\mathrm{m\,s^{-1}}$.

After the collision B reverses its direction of travel and has a speed of $3 \,\mathrm{m\,s^{-1}}$.

The magnitude of the impulse received by A due to its impact with B is 1.2 Ns.

b Find m_1 .

(2)

c Find m_2 .

(3)

(Total for Question 1 is 7 marks)

2 A light elastic string, of natural length 12 cm, with modulus of elasticity λN , is connected at one end to a fixed point X.

A particle of mass $200\,\mathrm{g}$ is attached to the other end of the string such that the particle hangs freely in equilibrium, vertically below X.

In this equilibrium position the string is 16 cm long.

a Show that $\lambda = 5.88$

(4)

The string and particle are now detached from X and attached to a new fixed point, Y, which lies at one edge of a rough horizontal surface with coefficient of friction $\mu = 0.7$

The string is extended x cm beyond its natural length so that the string lies in a straight line parallel to the surface. The particle lies on the surface, at rest, in equilibrium.

b Find the maximum possible value of x.

(3)

 \mathbf{c} Explain why this value of x is a maximum.

(1)

(Total for Question 2 is 8 marks)

3 A high speed train, of total mass 4.2×10^5 kg, is travelling along a straight horizontal track.

The train's engine is working at a constant rate of 8.1×10^6 W.

At the instant the train has a speed of $30 \,\mathrm{m\,s^{-1}}$ it has an acceleration of $0.3 \,\mathrm{m\,s^{-2}}$.

At this same instant, the total resistance to motion experienced by the train is R Newtons.

Calculate the value of *R*.

(4)

(Total for Question 3 is 4 marks)

- 4 A straight, rigid slide *d* metres long is inclined at 30° to the horizontal. This slide is modelled as the line of greatest slope of an inclined plane.
 - A child, Gemma, of mass $m \log s$, pushes herself from the top of the slide so she begins her descent along the line of greatest slope with an initial velocity of $0.1 \,\mathrm{m\,s^{-1}}$.
 - The coefficient of friction between Gemma and the slide is 0.5.
 - Gemma's speed is $v \, \text{m s}^{-1}$ when she reaches the bottom of the slide.
 - a Show, by considering the work-energy principle, that

$$v^2 = \left(1 - \frac{\sqrt{3}}{2}\right)gd + \frac{1}{100}$$

(5)

b Given that $v = 2 \,\mathrm{m \, s}^{-1}$, find the length of the slide. Give your answer to the nearest centimetre.

(1)

- Gemma now chooses to sit on a mat to try and **eliminate** friction as she slides for a second time down the same slide.
- She again begins her descent with an initial velocity of 0.1 m s⁻¹.
- Gemma's speed is now $v = 5 \,\mathrm{m \, s}^{-1}$ when she reaches the bottom of the slide.
- c Prove, by considering conservation of mechanical energy, that friction was not eliminated.

(4)

(Total for Question 4 is 10 marks)

5 Two particles of equal mass, $m \log m$, are moving with constant velocity in a two dimensional plane.

The first particle has initial velocity $u_1 = (2i + 4j) \text{ m s}^{-1}$.

The second particle has initial velocity $u_2 = (3\mathbf{i} - 7\mathbf{j}) \,\mathrm{m\,s}^{-1}$.

An impulse of $(4m\mathbf{i} - 18m\mathbf{j}) \text{ kg m s}^{-1}$ is then applied to the first particle.

a Prove that the first particle travels in a direction parallel to the second particle as a result of this impulse.

(4)

The second particle now collides with a third particle, of mass $3m \,\mathrm{kg}$, which is travelling with initial constant velocity $u_3 = (5\mathbf{i} + 8\mathbf{j}) \,\mathrm{m\,s}^{-1}$.

At the point of collision, the two particles coalesce and the new larger particle thus formed begins to move with velocity $v \, \text{m} \, \text{s}^{-1}$.

b Determine the speed of this new larger particle.

(4)

(Total for Question 5 is 8 marks)

6 Two particles *A* and *B* lie at rest in a straight line on a smooth horizontal plane.

The particles A and B have masses, in kilograms, of 4m and 7m respectively.

Particle A is projected towards particle B with constant speed $u \, \text{m s}^{-1}$.

The coefficient of restitution between these two particles is e.

After the collision with A, B then collides directly with a smooth vertical wall.

The coefficient of restitution between B and the wall is $\frac{1}{6}e$.

a Show that the speed, $w \,\mathrm{m} \,\mathrm{s}^{-1}$, of particle B after colliding with the wall is given by:

$$w = \frac{2}{33}eu\left(1+e\right)$$

(4)

b Given that particle *B* collides with particle *A* for a second time, determine the range of possible values for *e*.

(5)

Particle A comes to instantaneous rest as a result of first colliding with particle B.

c Find an exact expression in terms of *m* and *u* for the kinetic energy lost by *B* when *B* first **collides** with the wall.

(3)

(Total for Question 6 is 12 marks)

A spring, of natural length 0.25 m and modulus of elasticity $20 \,\mathrm{N}\,\mathrm{m}^{-2}$, is attached at one end to a fixed point P so that it hangs vertically.

A particle of mass $1.2 \,\mathrm{kg}$ is attached to the spring's free end and this system is held in position so that the particle hangs $0.3 \,\mathrm{m}$ vertically below P.

From this position, the particle is projected vertically downwards with an initial velocity of $u \, \text{m s}^{-1}$.

For modelling purposes it may be assumed there are no resistance forces to the motion.

The particle first comes to rest when it has travelled a distance of 20 cm.

a Using a suitable model for the energy in this system, show that $u = 0.28 \,\mathrm{m\,s^{-1}}$.

(5)

The above starting conditions for the same particle are now repeated but the initial downward velocity given to the particle is increased to 1 ms⁻¹.

The particle now first comes to rest a distance d cm below P.

b Find *d* to the nearest centimetre.

(5)

The model's prediction for d in part \mathbf{b} is now checked experimentally.

The distance d is measured to be 54 cm.

c i Calculate the extra loss in energy suggested by this result.

(3)

ii Explain the likely nature of this extra energy loss.

(1)

(Total for Question 7 is 14 marks)

8 Two smooth spheres, P, of mass 0.5 kg, and Q, of mass 1.2 kg, have equal radii. P and Q are moving on a smooth horizontal surface so that they collide obliquely.

Immediately before the collision:

- P has speed 2u inclined at θ° to the line of centres of the spheres at the instant of impact.
- Q has speed u also inclined at θ° to the line of centres of the spheres.

This is shown as a plan view in Figure 1.

Figure 1

Immediately after the collision:

P has speed v_P .

Q travels at 90° to its path before the collision and has speed v_Q .

At the instant of impact, a smooth vertical wall lies parallel to the line of centres of the spheres.

After colliding with P, Q collides with this wall.

After its collision with the wall, Q moves away from the wall at an angle α° as shown.

The coefficient of restitution between P and Q is e.

The coefficient of restitution between Q and the wall is $\frac{1}{5}e$.

Given that $\tan \theta = \frac{1}{6}$

a Show that
$$e = \frac{89}{540}$$

(8)

b Find the exact value of $\tan \alpha$.

(4)

(Total for Question 8 is 12 marks)

TOTAL FOR PAPER IS 75 MARKS

*, . . .