Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	$400\mathrm{m}\sim\mathrm{Po}(2)$			3 rd
	P(X2) = 1 - P(X,, 1) = 0.5940	M1 A1	1.1b 1.1b	Use the Poisson distribution to model real-world situations
		(2)		
1b	$P(X_{,,} 3) = 0.8571$	B1	1.1a	3 rd
				Use the Poisson distribution to model real-world situations
		(1)		
1c	$(0.8571)^5 = 0.4625$	M1 A1	2.1 1.1b	3 rd Use the Poisson distribution to model real-world situations
		(2)		
1d	$H_0: \lambda = 5$ $H_1: \lambda < 5$	B1	2.5	4 th
	$P(X_{,,} 2) = 0.1247$	M1 A1	1.1b 1.1b	Carry out one- tailed tests for the mean of a Poisson
	Do not reject H_0 . There is no evidence to suggest that the new cloth is an improvement on the previous one	M1 A1	2.4 2.2b	distribution
		(5)		
1e	From tables Po(5) CR = $X \le 1$	B1	2.1	6 th
	$P(\text{Type II error}) = P(X 2 \mid \lambda = 3)$	M1	3.1a	Calculate the value of a Type II
	$1 - P(X_{,,} 1)$	M1	1.1b	error using conditional probability
	1 - 0.1991 = 0.8009	A1	1.1b	probability
		(4)		
				(14 marks)

1a M1: $P(X...2) = 1 - P(X_{,1})$

A1: 0.5940

1b B1: 0.8471

1c M1: $(part(b))^5$

A1: 0.4625

1d B1: Both hypotheses

M1: Writing or using $P(X_{,,} 2)$

A1: 0.1247

M1: A non-contextual statement follow through $P(X \le 2)$

A1: There is no evidence to suggest that the new cloth is an improvement on the previous one

1e **B1:** $CR X \le 1$

M1: $P(X \ge 2)$

M1: $1 - P(X \le 1)$

A1: 0.8009

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	$P(X \le 3) = 0.0424$ $P(X \le 4) = 0.0996$	M1	3.3	3rd
	$X \leqslant 3$	A1	1.1b	Understand the language of hypothesis testing
		(2)		
2b	$P(X \le 3) = 0.0424$	B1 cao	1.2	5 th
				Know the definition of the size of a test
		(1)		
2c	Power function = $P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$	M1	2.1	$7^{ m th}$
	$e^{-\lambda} + e^{-\lambda}\lambda + \frac{e^{-\lambda}\lambda^2}{2!} + \frac{e^{-\lambda}\lambda^3}{3!}$	M1 A1	3.4 1.1b	Use standard probability distributions to
	$e^{-\lambda} + e^{-\lambda}\lambda + \frac{e^{-\lambda}\lambda^2}{2!} + \frac{e^{-\lambda}\lambda^3}{3!}$ $e^{-\lambda}\left(1 + \lambda + \frac{1}{2}\lambda^2 + \frac{1}{6}\lambda^3\right) \qquad *$	A1 cso	1.1b	find the power of a test
		(4)		

(7 marks)

Notes

2a M1: $P(X \le 3) = 0.0424$ or $P(X \le 4) = 0.0996$

A1: $X \le 3$ oe

2b B1: 0.0424 cao

2c M1: P(X=0) + P(X=1) + P(X=2) + P(X=3)

M1: Use of $\frac{e^{-\lambda} \lambda^r}{r!}$ (may be implied by 2 correct terms)

A1: All 4 correct terms

A1: cso A correct solution with no incorrect working seen

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3ai	$X \sim \text{Negative B}(3, 0.7)$ $P(X = 5) = {4 \choose 2} 0.7^3 0.3^2 = 0.18522$	M1 A1	3.3 1.1b	5 th Use the negative binomial distribution to model real-world situations
		(2)		
3aii	$Y \sim \text{Negative B}(5, 0.7)$ $P(Y = 9) = {8 \choose 4} 0.7^5 0.3^4 = 0.095295$	M1 A1	3.3 1.1b	5 th Use the negative binomial distribution to model real-world situations
		(2)		
3b	Penalty kicks are independent	B1	3.5b	5 th
	Probability of success is the same for each penalty kick	В1	3.5b	Understand the assumptions necessary for the negative binomial distribution
		(2)		

(6 marks)

Notes

3ai M1: Use of Negative B(3, 0.7) with P(X=5)

A1: awrt 0.185

3aii M1: Use of Negative B(5, 0.7) with P(Y = 9)

A1: awrt 0.0953

3b B1: Penalty kicks are independent

B1: Probability of success is the same for each penalty kick

NB: Context only needs to be seen in one answer to allow B2

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor			
4a	$\frac{1-p}{1}=6$	M1	3.1b	6 th			
	p^2			Calculate the mean of a			
	$6p^2 + p - 1 = 0$	M1	1.1b	geometric distribution			
	(3p-1)(2p+1) = 0	M1	1.1b	S. D. G. H. S. and approximated			
	$\frac{1-p}{p^2} = 6$ $6p^2 + p - 1 = 0$ $(3p-1)(2p+1) = 0$ $p = \frac{1}{3}$	A1	1.1b				
	$E(X) = \frac{1}{\frac{1}{3}} = 3$	M1 A1	3.4 1.1b				
		(6)					
4bi	$1(2)^3$ 8	M1	2.1	5 th			
	$P(X=4) = \frac{1}{3} \left(\frac{2}{3}\right)^3 = \frac{8}{81}$	A1	1.1b	Use the geometric distribution to model real-world situations			
		(2)					
4bii	$P(X > 4) = \left(\frac{2}{3}\right)^4 = \frac{16}{81}$	M1 A1	2.1 1.1b	5 th Use the geometric distribution to model real-world situations			
		(2)					
4c	$P(Y=1) = p$ $P(Y=3) = (1-p)^2 p$ $P(Y=5) = (1-p)^4 p$	B1	3.3	7 th			
	Common ratio = $(1-p)^2$	M1	3.1a	Solve problems using the			
	$S_{\infty} = \frac{p}{1 - \left(1 - p\right)^2}$	M1	2.1	geometric distribution in a range of contexts			
	$= \frac{p}{2p - p^2} = \frac{1}{2 - p} $ *	M1 A1 cso	1.1b 1.1b				
		(5)					
	(15 marks)						

4a M1:
$$\frac{1-p}{p^2} = 6$$

M1: Rearranging to a 3 term quadratic

M1: Solving a 3 term quadratic

A1: $p = \frac{1}{3}$ must reject the other root

M1: Attempting $E(X) = \frac{1}{p}$

4bi M1:
$$p(1-p)^3$$

A1:
$$\frac{8}{81}$$

4bii M1: for
$$(1-p)^4$$

A1:
$$\frac{16}{81}$$

4c B1: At least 2 terms from
$$P(Y=1) = p$$
 $P(Y=3) = (1-p)^2 p$ $P(Y=5) = (1-p)^4 p$

M1: Recognising that the common ratio is $(1-p)^2$

M1: Use of the sum to infinity

M1: Simplifying to
$$\frac{p}{2p-p^2}$$
 oe

A1: cso A correct solution with no incorrrect working seen

Q	Scheme					Marks	AOs	Pearson Progression Step and Progress descriptor
5a	k(1+1+1)=3					M1	2.1	5 th
	$k = \frac{1}{3}$					A1	1.1b	Understand the definition of a probability generating function (p.g.f.)
						(2)		
5b			1		1	B1	1.1b	6 th
	P(X=x)	$\frac{1}{3}$	$\frac{1}{3}$	5 1/3		B1	1.1b	Use the definition of a p.g.f. to find the p.g.f. of a given probability distribution
						(2)		
5c	$G'_{-1}(t) = \frac{1}{2}(2t + 5t^4)$)				M1	2.1	6 th
	$G'_X(t) = \frac{1}{3}(2t + 5t^4)$ $E(X) = G'_X(1) = \frac{7}{3}$				A1	1.1b	Use a given p.g.f. to calculate the mean of a probability distribution	
						(2)		
5d	$G''_{-}(t) = \frac{1}{2}(2 \pm 20t)$	3)				M1	2.1	$7^{ m th}$
	$G''_X(t) = \frac{1}{3} (2 + 20t^3)$ $Var(X) = \frac{22}{3} + \frac{7}{3} - \left(\frac{7}{3}\right)^2 = \frac{38}{9} \text{ oe, e.g. } \frac{114}{27}$					M1 A1	1.1b 1.1b	Use a given p.g.f. to calculate the variance of a probability distribution
						(3)		
								(9 marks)

5a M1: Use of $G_X(1) = 1$

A1:
$$k = \frac{1}{3}$$

5b B1: Top row

B1: Bottom row

5c M1: An attempt to find $G'_X(t)$

A1:
$$G'_X(1) = \frac{7}{3}$$

5d M1: An attempt to find $G''_X(t)$

M1: Var(x) =
$$G'_X(1) + G'_X(1) - (G'_X(1))^2$$

A1:
$$\frac{38}{9}$$

Q	Scheme					AOs	Pearson Progression Step and Progress descriptor
6ai	Time Interval	0	E		M1 A1	3.4 1.1b	6 th Know how to apply the
	8:30 – 11:30	20	12				goodness of fit test to a discrete
	11:30 – 1:30	3	8				uniform distribution
	1:30 – 3 :30	6	8				distribution
	3:30 – 5:30	7	8				
	H_0 : Uniform distr H_1 : Uniform distr				B1	2.5	
	$\sum \frac{(O-E)^2}{E} = \frac{8^2}{12} + \frac{5^2}{8} + \frac{2^2}{8} + \frac{1^2}{8} = 9.08$				M1 A1	1.1b 1.1b	
	CV $\chi^2 = 6.251$				B1	1.1a	
	Reject H ₀ . Signific does not model the				M1 A1	2.4 2.2b	
					(8)		
6aii	If the technician's would provide an			orm distribution	M1	2.2b	6 th
	would provide an adequate model $ As \ we \ have \ rejected \ H_0 \ we \ reject \ the \ technician's \ belief $				A1	3.5a	Know how to apply the goodness of fit test to a discrete uniform distribution
					(2)		
6b	Number of false a expected	larms betwee	en 3:30 to 5:3	30 is slightly less than	B1	3.3	7 th
	No evidence to substween 4 pm and			f as the number	B1 B1	3.5a	Apply chi- squared tests in context and in unfamiliar
					ы	3.4	situations
					(3)		

6c	Inappropriate as expected value for a single hour would be 4,	M1	3.1a	4 th
	which is < 5 and so test would be invalid	A1	3.2b	Understand the principle of a goodness of fit test
	(6)	(2)		

(15 marks)

Notes

6ai M1: Calculating expected values (may be implied by one correct expected value)

A1: All expected values

B1: Both hypotheses

M1: Attempting to find $\sum \frac{(O-E)^2}{E}$

A1: awrt 9.08

B1: CV = 6.251

M1: A non-contextual statement follow through their CV and test statistic

A1: Significant evidence that the uniform distribution does not model the distribution of daily times of false alarms

6aii M1: If the technician's belief was correct a uniform distribution would provide an adequate model

A1: Reject the technician's belief

6b B1: The number of false alarms between 3:30 to 5:30 is slightly less than expected

B1: No evidence to support the manager's belief

B1: The number between 4 pm and 5:30 pm is unknown

6c M1: Expected value for a single hour would be 4

A1: Which is < 5 and so the test would be invalid

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7	$E(X) = \left(0 \times \frac{1}{4}\right) + \left(1 \times \frac{1}{2}\right) + \left(2 \times \frac{1}{8}\right) + \left(3 \times \frac{1}{8}\right) = \frac{9}{8}$	M1	1.1b	8 th
	$E(X^{2}) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	M1	1.1b	Recognise and apply the central limit theorem in contextualised situations
	$Var(X) = \frac{17}{8} - \left(\frac{9}{8}\right)^2 = \frac{55}{64}$	M1 A1	1.1b 1.1b	
	Let <i>T</i> be the RV corresponding to the total of the 500 observations			
	$E(T) = 500 \times \frac{9}{8} = 562.5$	M1	3.1a	
	$Var(T) = 500 \times \frac{55}{64} = \frac{6875}{16}$	M1	1.1b	
	By CLT $T \sim N\left(562.5, \frac{6875}{16}\right)$			
		M1	3.4	
	$P(T < 520) = P\left(Z < \frac{520 - 562.5}{\sqrt{\frac{6875}{16}}}\right) = P(Z < -2.05)$	A1	1.1b	
	1 - P(Z < 2.05) = 0.0202	A1	1.1b	
		(9)		
		1		(9 marks)

7 **M1:**
$$\left(0 \times \frac{1}{4}\right) + \left(1 \times \frac{1}{2}\right) + \left(2 \times \frac{1}{8}\right) + \left(3 \times \frac{1}{8}\right) = \frac{9}{8}$$

M1:
$$\left(0^2 \times \frac{1}{4}\right) + \left(1^2 \times \frac{1}{2}\right) + \left(2^2 \times \frac{1}{8}\right) + \left(3^2 \times \frac{1}{8}\right) = \frac{17}{8}$$

M1: Use of
$$Var(X) = E(X^2) - (E(X))^2$$

A1:
$$\frac{55}{64}$$

M1: Finding E(T)

M1: Finding Var(*T*)

M1: Standardising using 520 and E(T) and Var(T)

A1:
$$\frac{520 - 562.5}{\sqrt{\frac{6875}{16}}}$$
 or awrt -2.05

A1: awrt 0.0202