©Computer Science @ Aquinas College

Haskell: Higher Order Functions

Higher order functions can take other functions as parameters or return another function. There are
three important higher order functions built into functional programming languages. They all
perform actions on lists

e Map
This applies a function to every item on the list and returns a list. It takes as its arguments
(parameters) the function to be used and the list it is to be used on...

Map (function) [list]

>Map double [1,2,3]
[2,4,6]

e Filter
This applies a condition to every item on the list and returns a list of items that meet the
condition

Filter (function) [list]

>Filter (>3) [1..5]
[4,5]

e Fold
This applies a ‘combining function’ to a list continually until the list is reduced to a

single value.

Folds are among the most useful and common functions in Haskell. They are an
often-superior replacement for what in other language would be loops, but can do
much more.

There are two types of fold

Foldr : Starts from the last item and works backwards
Foldl: Starts from the first item and works forwards

Page | 12

©Computer Science @ Aquinas College

TASK 2 - Functions and Higher Order Functions

Try this first.

Open the file HaskellFunctions.hs

Load this into the Haskell interpreter. Enter at prompt

Main> square 2

Main> sumUpList [1,2,3,4]

Open HaskellFunctions.hs in notepad and ...

a)

b)

Write a function called DoubleMe which receives an integer and outputs an integer twice the
value of the argument provided.

Answer

If you can, write a factorial function (remember a factorial will take in an Int and output an Int). It
will use recursion and so needs a base case! Look at the other functions such as sumuplist to help.

Test your function works!

Answer

The min function takes two arguments and gives the lower. e.g.

>min 5 6
5

In one line of code write a command to find the minimum of the numbers 4 6 and 8. Think of it as
the minimum of a number with the minimum of two numbers.

Answer

Page | 13

©Computer Science @ Aquinas College

d) Write a map function and the square function to square every number in the list [1..10]
So.. [1,2,4,9,16,25,36,49,64,81,100]
Answer
e) Use the filter function and the isPrime Function to find every prime number between 1 and 1000.
Answer
f) Try this, what do you get?
Main> foldr (\acc x -> acc + x) @ [5,7,8,4]
Answer
g) Adjust this function to find the product of this list (i.e. multiply them all together rather than add
them).
Answer
h) Adjust this fold function to count how many odd numbers there are in the list — use the isOdd
function in the program which returns 1 —if odd, 0 - if even. Be careful you may need to consider
the type of fold you need!
Answer

Page | 14

©Computer Science @ Aquinas College

i) Write a fold function, using the min function we encountered before to find the smallest number
in alist

Answer

j) Look at the ‘interesting’ function in the program. It seems to take a list and output a list.

a. What does it do?
Answer

b. What specific algorithm is it performing? (One for the A level mathematicians!)
Answer

Page | 15

©Computer Science @ Aquinas College

Lists in Functional Programming
Lists in functional languages are considered as a combination of head and tail

List
1 2 3 4 5 |6 |7 8 9
HEAD TAIL
The head is an element The tail is itself another list (which in turn has its own

head and tail)
In Haskell lists are representedas: [1,2,3,4,5,6,7,8,9]
An empty list would look like this: T[]
Typinginhead [1,2,3,4,5,6,7,8,9] gives1
Typing in tail [1,2,3,4,5,6,7,8,9] gives[2,3,4,5,6,7,8,9]
When describing lists in Haskell we use the form X:XS eg. 1: [2,3,4,5,6,7,8,9]
Where X is the head
Where XS is the tail

We often process lists using recursion. We process the head then recursively process the tail.

sumUpList :: (Num a) => [a] -> a
sumUpList [] = 0 <€ ifit’san empty list return 0 (base case)

sumUpList (x:xs) = x + sumUpList xs <€ Addthe head value to the sum of the tail.

WHY DO YOU LIKE FONCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL. RECURSION 15
IT5 OWN REWARD.

N

© xkcd

Page | 16

©Computer Science @ Aquinas College

HASKELL - WORKSHOP 3 Lists and processing lists

Haskell: Using Lists (some more functions!)

Basics
e Define a list xs

XS= [1121 314]

e Get the size of the list.
length xs (4)
e Turn a list backwards.

reverse xs ([4,3,2,11)

Finding / searching

head xs (1)

(returns the first element of the list.)

last xs (4)

(returns the last element of the list.)

tail xs ([2,3,47)
(returns all but first element)

init xs ([1,2,3])

(returns all but last element)

Adding

e Add an element to the start of a list.

new element : xs (5:s = [5,1,2,3,4]1)

e Add an element to the end of a list.

xs ++ [new element] (s++[5] =2 [1,2,3,4,5])
Empty lists

e Define an empty list z

z=[1]

o Check if a list is empty.

null xs (null xs = false)
(null z =2 true)

Page | 17

©Computer Science @ Aquinas College

TASK3 - Using Lists

a) Enter the following expressions at the prelude> prompt
s=[1,2,3,4]

Using Just using ONE LINE OF CODE Enter a command to display the first item in the list

Answer

b) Enter the following expressions at the prelude> prompt
s=[1,2,3,4]

Using Just using ONE LINE OF CODE Enter a command to add together (using +) the first
and last item in the list

Answer

c) Enter the following expressions at the prelude> prompt
s=[1,2,3,4]

Using Just using ONE LINE OF CODE make a new list that removes the head of this
list and adds it to the end

So [1,2,3,4] becomes [2,3,4,1]

Answer

d) Enter the following expressions at the prelude> prompt
s=[1,2,3,4,5,6]

Using Just ONE LINE OF CODE (functional composition!) and using only HEAD
and TAIL display the number 3 in the list.

Answer

Page | 18

©Computer Science @ Aquinas College

e) Enter the following expressions at the prelude> prompt
s=[1,2,3,4]
Using Just ONE LINE OF CODE add the last item of the list to the front of the list
So [1,2,3,4] becomes [4,1,2,3,4]

Answer

f) Enter the following expressions at the prelude> prompt

s=[1,2,3,4]

t=1]

Using Just ONE LINE OF CODE make a list of the length of list t and length of list s
So [0,4]

Answer

Page | 19

©Computer Science @ Aquinas College

Partial Function Application
This is the principle that a function can be called with an incomplete number of arguments.

In mathematical terms

The function Add (x,y) may take two integers and return an integer. However we now that it is
actually considered as a function of a sub function with single arguments i.e.

Add(x,y) = Addx (y)
Therefore its function application scheme is (note: right associative)
Add: integer- (integer—-integer)
Add Addx (y)
We can drop the brackets and so it becomes

Add: integer—>integer-integer

Whoopy do.

So when declaring a function signature in Haskell we can do this...
powerOf :: Int -> Int -> Int

A

powerOf x y = x"y

Page | 20

©Computer Science @ Aquinas College

HASKELL - WORKSHOP 4 Partial application of functions

Haskell : Partial Application of functions
Looking at your HaskellFunc.hs program you will see a function called powerOf

It looks like this...

powerOf :: Int -> Int -> Int

A

powerOf x y = x"y

You will see from the function signature that it takes two integer arguments x and y and outputs an
integer result xV.

However, functional languages such as Haskell only actually accept a single argument to any function
so what is actually happening when you type...

powerOf 2 3 27
Haskell is translating this into a series of functions each with one parameter (called currying)....

powerOf 2 3

-
(PowerOf2) 3

>
8

So what? | hear you sigh. Well, by partially applying functions. i.e. not passing all the parameters
what you return is not the result but another function e.g.

powerOf 2
>

PowerOf2 ?
So you can create new functions without having to code them!!

For example, if | want a function to square a number (which is x?)

| could do it all from scratch...

Square :: int -> int

Square x = x * x

Or.. | could create a function by partially applying the PowerOf function.

Square = PowerOf 2

Because a partially applied function returns another function! In this case to the PowerOf 2.

| can now enter:

>Square 4

16

Page | 21

©Computer Science @ Aquinas College

TASK 4 - Partial application of functions

Open the file HaskellFunctions.hs
Load this into the Haskell interpreter

a) Write a function called ‘cube’ that produces the cube of any number provided as an
argument. Use partial application of the PowerOf function to do this. Note : you can do this
on the command line and don’t need to do it by changing the file in notepad

Answer

b) Test your cube function with the number 3. (the answer should be 27!)

Answer

c) Write acommand to map your new function to the list [1,2,3,4] to produce the list
[1,8,27,64]

Answer

We can use partial application on infix functions too by putting them inside brackets

For example, let’s create a function called ‘double’ :
>double=(*2)

You can see we are missing one of the arguments in our multiply calculation so it will return
a function that effectively doubles the missing argument (by multiplying it by two)

Page | 22

©Computer Science @ Aquinas College

d) The infix function ++ adds two string arguments together
E.g.
>“Long” ++”fellow”
“Longfellow”

Create a function question using partial application that will stick a question mark at the

end of any string argument provided.
e.g.

>question “Why me”

“Why me?”

Answer

e) Write a command to map your new function to the list
[\\Wholl , //Why// , //HOWII , /Iwhen//]

Answer

Page | 23

©Computer Science @ Aquinas College

Functional Programming - Past Paper Question

In a functional programming language, a recursively defined function named map and a
function named double are defined as follows:

map f [] = [
map £ (x:x8) = f x : map f xs

double x = 2 * x

The function x has two parameters, a function £, and a list that is either empty
(indicated as [7]), or non-empty, in which case it is expressed as (x:xs) in which x is
the head and xs is the tail, which is itself a list.

(@) In Table 1, write the value(s) that are the head and tail of the list
[1, 2, 3, 4 1.

Table 1

Head

Tail

(b) The result of making the function call double 3is 6.

(1)

Calculate the result of making the function call listed in Table 2.

Table 2
Function Call Result
map double r 1, 2, 3, 4]

(1)

(c) Explain how you arrived at your answer to part (b) and the recursive steps that

you followed.

(3)

(Total 5 marks)

Page | 24

