

Rev 1.2 Page 1 of 4 May 15, 2018

CamJam EduKit Robotics
Worksheet Seven (GPIO Zero) – Control

& Calibration
camjam.me/edukit

CamJam EduKit Robotics – Control and Calibration
Project Control and Calibration

Description Before you set your Robot loose on the world, you first need to get better control of it.

Equipment Required
For this worksheet, you will require:

• Your robot

• A battery for your Pi

Control and Calibration
In worksheet three, you learnt how to make your robot move, but you may have noticed that it is quite quick.
Before you try to control it either autonomously or with a remote controller, you need to be able to slow it
down so that it is easier to manoeuvre.

How can you do that when you can only turn GPIO pins on and off? The GPIO Python library has something
called PWM – or Pulse-Width Modulation – a way of turning the GPIO pins off and on very quickly. It happens
so quickly that you will not see the motors stop and start. By changing how quickly the GPIO pins are
switched on and off, and how long the pulses last, you can change the speed of the motors.

There are two important parameters that determine PWM: “frequency” and “duty cycle”.

Frequency

Frequency, in Hertz (Hz) is the number of times per second that a pulse is generated. This counts from the
start of one pulse to the start of the next. i.e. from when the pulse starts to rise, to the next time it starts to
rise. So, it includes all the “on” time and “off” time and “in between” time for one complete wave cycle.

Duty Cycle

Duty cycle is the percentage of time between pulses that the signal is “High” or “On”. So if you have a
frequency of 50 Hz and a duty cycle of 50%, it means that every 1/50th (0.02) of a second a new pulse starts
and that pulse is switched off half way through that time period (after 1/100th or 0.01s).

Rev 1.2 Page 2 of 4 May 15, 2018

CamJam EduKit Robotics
Worksheet Seven (GPIO Zero) – Control

& Calibration
camjam.me/edukit

Explaining PWM

Example - Frequency 50 Hz, Duty Cycle 50%

This gives a pulse 50 times per second (or every 0.02 seconds). During each 0.02 second time period, the
port will be “High” (3.3V) half the time and “Low” (0V) the other half. An oscilloscope trace would look like
this:

50 hertz with 50% duty cycle

You can see that the signal is high (3.3V or 3V3) half of the time. A multimeter will let you measure the duty
cycle if you set the meter to volts. A 50% duty cycle should read 50% of 3.3 Volts = 1.65V, although it might
fluctuate a bit.

Example - Frequency 50 Hz, duty cycle 75%

This one has a duty cycle of 75%, so the 3.3V pulse is “High” 75% of the time and the average overall voltage
delivered is 2.5V (75% of 3.3V).

50 hertz with 75% duty cycle

If duty cycle is 100 or 0, frequency becomes irrelevant as the signal is either completely on or completely off.

So how does this help you? Well, by supplying less power to the motors, you will be able to slow them down,
and therefore make the robot more controllable.

Rev 1.2 Page 3 of 4 May 15, 2018

CamJam EduKit Robotics
Worksheet Seven (GPIO Zero) – Control

& Calibration
camjam.me/edukit

Code
You are going to edit the code you wrote in Worksheet 4 to make the motor speed changeable.

Resave the 4-driving.py as 7-pwm.py. Edit the code to make it look like the following:

CamJam EduKit 3 - Robotics
Worksheet 7 - Controlling the motors with PWM

import time # Import the Time library
from gpiozero import CamJamKitRobot # Import the GPIO Zero Library CamJam
library

robot = CamJamKitRobot()

Set the relative speeds of the two motors, between 0.0 and 1.0
motorspeed = 0.3

motorforward = (motorspeed, motorspeed)
motorbackward = (-motorspeed, -motorspeed)
motorleft = (motorspeed, 0)
motorright = (0, motorspeed)

robot.value = motorforward
time.sleep(1)

robot.value = motorbackward
time.sleep(1) # Pause for 1 second

robot.value = motorleft
time.sleep(1) # Pause for 1 second

robot.value = motorright
time.sleep(1) # Pause for 1 second

robot.stop()

Running the Code
Run the code. You should see that the robot is moving at about a third of the speed that it was in Worksheet
4.

Making the Robot Move in a Straight Line
You may find that your robot does not drive in an exact straight line. That is because the motors are not
precision devices, and there will always be a variation in them that will affect how fast they go. However,
using different PWM for each motor, you will be able to vary the speed of each motor to get them to match
a little better.

Once again, edit your code, saving it as 7-pwm2.py

Replace the motorspeed variable with two, one for each motor:

leftmotorspeed = 0.5
rightmotorspeed = 0.5

Then, replace every occurrence of motorspeed with either leftmotorspeed or rightmotorspeed,
depending on whether the line of code is controlling motor A or B.

Rev 1.2 Page 4 of 4 May 15, 2018

CamJam EduKit Robotics
Worksheet Seven (GPIO Zero) – Control

& Calibration
camjam.me/edukit

Your code should look like this:

CamJam EduKit 3 - Robotics
Worksheet 7 - Controlling the motors with PWM

from gpiozero import CamJamKitRobot # Import the GPIO Zero Library CamJam
library
import time # Import the Time library

robot = CamJamKitRobot()

Set the relative speeds of the two motors, between 0.0 and 1.0
leftmotorspeed = 0.5
rightmotorspeed = 0.5

motorforward = (leftmotorspeed, rightmotorspeed)
motorbackward = (-leftmotorspeed, -rightmotorspeed)
motorleft = (leftmotorspeed, 0)
motorright = (0, rightmotorspeed)

robot.value = motorforward
time.sleep(1)

robot.value = motorbackward
time.sleep(1) # Pause for 1 second

robot.value = motorleft
time.sleep(1) # Pause for 1 second

robot.value = motorright
time.sleep(1) # Pause for 1 second

robot.stop()

Now run your code.

Your robot will still not be going in a straight line as both speeds are still the same.

Calibration
You now need to experiment, changing one or both motor speed variables until your robot goes in a straight
line.

Challenges
1. Try adding more functions to your robot so that it can drive at different speeds.
2. Change the sleep times when turning left and right to make your robot turn 90° at a time.

