[bookmark: _Toc415649027][bookmark: _Toc469398931]Food Magnate Simulation

Programming Tasks
The following require you to open the skeleton program and make modifications

Task 1	(max. 6 marks)

This question refers to the subroutine ModifyCompany within the Simulation class.
Currently, the user is prompted to enter a value of 1, 2 or 3, but if nothing is entered by the user, the program responds by outputting a blank line.
Change the subroutine ModifyCompany to present the user with an additional choice: "C. Cancel". If the user enters anything other than 1, 2, 3 or an upper-case 'C', the menu should be redisplayed repeatedly until either 1, 2, 3 or C is selected. If 1, 2 or 3 is entered, ModifyProgram should behave as normal. If an upper-case 'C' is entered, the program should output 'Operation Cancelled', and ModifyCompany should terminate without executing any additional code.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 3 for 'modify company'
· enter 'AQA Burgers' when prompted for a company name
· enter 'X' at the first prompt of the 'modify company' submenu
· enter 'C' at the second prompt of the 'modify company' submenu

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine ModifyCompany

b. SCREEN CAPTURE(S) showing the required test

Task 2	(max. 9 marks)
This question refers to the subroutine GetRandomLocation within the Settlement class.
This subroutine generates a random location within the bounds of the settlement that is used to position a new household. Currently, there is no mechanism for ensuring that a new household is not assigned the location of an existing household.
Change the subroutine GetRandomLocation to ensure that only unoccupied locations are returned. Prior to returning the location, a check should be made to determine whether the location is already occupied by a household. If it is already occupied, a new location should be generated, repeatedly if necessary.
Test that the changes you have made work:
· modify the Settlement constructor in the following ways:

· change XSize = 1000 to XSize = 3
· change YSize = 1000 to YSize = 3
· change StartNoOfHouseholds = 250 to StartNoOfHouseholds = 8

· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 1 for ‘display details of households’

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine GetRandomLocation

b. SCREEN CAPTURE(S) showing the required test

Task 3	(max. 7 marks)
This question refers to the subroutine ExpandOutlet within the Company class, as well as a new subroutine, ExtendCapacity, within the Outlet class.
Currently, each outlet has a limit, beyond which it cannot be expanded. Any attempt to expand beyond the limit results in the capacity being set at the limit itself.
Create a new subroutine in the Outlet class called ExtendCapacity which takes a single integer parameter. When this subroutine is called, the value of the attribute MaxCapacity should be multiplied by the value of this parameter.
Change the ExpandOutlet subroutine so that, in the event of an attempt to increase an outlet beyond its maxCapacity value, a random number is generated. Using this number, there should be a 40% chance of calling the new subroutine, ExtendCapacity, and passing a value of 2, a 35% chance of calling it and passing a value of 3, and a 25% chance of calling it and passing a value of 4. The message 'Outlet max capacity expanded' should be displayed in these circumstances, with no other message.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 2 for 'display details of companies', ensuring that outlet 4 for 'Paltry Poultry' is visible in your screenshot
· enter 3 for 'modify company'
· enter 'Paltry Poultry' when prompted for a company name
· enter 3 for 'expand outlet'
· enter 4 when prompted for an ID
· enter 1000 when asked for an amount
· enter 2 for 'display details of companies', ensuring that outlet 4 for 'Paltry Poultry' is visible in your screenshot

	 Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine ExpandOutlet

b. Your PROGRAM SOURCE CODE for the new subroutine ExtendCapacity

c. SCREEN CAPTURE(S) showing the required test

Task 4	(max. 8 marks)
This question refers to the subroutine ProcessDayEnd within the Simulation class, as well as a new subroutine, ProcessLeavers, within the Settlement class.
Currently, there is no mechanism for households to leave a settlement.
Create a new subroutine in the Settlement class called ProcessLeavers. This subroutine should accept no parameters and should return an integer value. Each household in the settlement should be subject to a random 2% chance of leaving the settlement. The ProcessLeavers subroutine should remove households as applicable from the Households data structure, and return the number of households that were removed.
Modify the subroutine ProcessDayEnd, so that the final instructions are to call ProcessLeavers and output the number of households that left the settlement.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 6 for 'advance to next day'

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine ProcessDayEnd

b. Your PROGRAM SOURCE CODE for the new subroutine ProcessLeavers

c. SCREEN CAPTURE(S) showing the required test

Task 5	(max. 7 marks)
This question refers to the subroutine Run within the Simulation class.
Currently, when modifying a company, the user needs to enter a company name in full, for which they must either remember it or scroll up the console window to see it previously displayed.
Change the subroutine Run so that when the user enters option 3 from the main menu (modify company), they are presented with a numbered list of names of companies. The first company to be displayed in the list should be displayed next to a number 1, even though its index in the Companies data structure will be 0.
When the user enters the number next to the company name, the program should respond in the same way as it would have done had the company's name been entered.
Entering the company's name should no longer be effective, and the input message should read 'enter the number next to the company you wish to modify'.
 Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 3 for 'modify company'
· enter 3 when asked for a number
· enter 3 for 'expand outlet'
· enter 4 for the ID
· enter 1000 for the amount
· enter 2 for 'display details of companies'

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine Run

b. SCREEN CAPTURE(S) showing the required test

Task 6	(max. 5 marks)
This question refers to an additional constructor for the Outlet class.
Currently, when a new outlet is constructed, this takes place by way of X and Y coordinates being passed to the Outlet constructor. In this task, you will create an additional constructor that facilitates random placement.
Without making any changes to the existing constructor, create an additional constructor for the Outlet class. This constructor should take as parameters three integers – MaxX, MaxY and MaxCapacityBase – and a Boolean, IsRandom. The MaxX and MaxY integers represent the highest values for X and Y that an outlet could possibly have within its settlement.
The constructor should contain code that sets XCoord to a random integer value between 0 and MaxX inclusive, as well as code that sets YCoord to a random integer value between 0 and MaxY inclusive.
All other attributes of the Outlet class should be set identically to those of the existing constructor.
Test that the changes you have made work:
· Modify the call to the Outlet class's constructor within the subroutine OpenOutlet of the Company class; it should read as follows:

· Dim NewOutlet As New Outlet(5, 10, Capacity, True)

· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 2 for 'display details of companies'

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the new Outlet constructor

b. SCREEN CAPTURE(S) showing the required test

Task 7	(max. 7 marks)
This question refers to the subroutines DisplayMenu and Run within the Simulation class.
Currently, the program allows the user to advance the simulation for multiple days only by repeatedly selecting option 6 from the menu.
Change DisplayMenu to include an additional option: '5. Advance'.
Change Run so that if option 5 is selected, the user is prompted for the number of days they wish the simulation to advance. This number, which does not require validation, will be the number of times that the subroutine ProcessDayEnd is called.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 5 for 'advance'
· enter 3 when asked for a number

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine Run

b. Your PROGRAM SOURCE CODE for the amended subroutine DisplayMenu

c. SCREEN CAPTURE(S) showing the required test

Task 8	(max. 9 marks)
This question refers to the subroutine AddCompany within the Simulation class.
Functionality will be added to allow a company type to be assigned at random.
Change the AddCompany subroutine so that the user is prompted to enter 1, 2, 3 or 4. The existing prompt should be updated to indicate that '4' means a randomly chosen type of company.
If 1, 2 or 3 is entered, the program should continue as before. If '4' is entered, a random number should be used to determine which of the three types of company will be created. Each type of company should be equally likely to be created.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· leave the second prompt blank, to indicate user-defined companies
· enter 1 when asked for a number of companies
· enter the company name 'Random Restaurant'
· enter a starting balance of 50000
· enter 4 to indicate a 'random' new company
· enter 2 for 'display details of companies'

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine AddCompany

b. SCREEN CAPTURE(S) showing the required test

Task 9	(max. 6 marks)
This question refers to the subroutine ProcessDayEnd in the Company class, as well as a new subroutine, CloseAllOutlets, also in the Company class.
Currently, a company can continue operating irrespective of how far below zero their balance falls.
Create a new subroutine called CloseAllOutlets, in the Company class, which iterates through all outlets belonging to the company, and closing them with a call to CloseOutlet.
Modify the subroutine ProcessDayEnd in the Company class, so that immediately before the return statement, the value of the balance field is checked. If it is below zero, a call to CloseAllOutlets is made, and a message is output to notify the user that all outlets have closed.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· leave the second prompt blank, to indicate user-defined companies
· enter 1 when asked for a number of companies
· enter the company name 'Bankrupt Burgers'
· enter a starting balance of 1000
· enter 2 to indicate a family restaurant
· enter 6 in the main menu, 'advance to next day'
· enter 2 in the main menu, 'display details of companies'

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine ModifyCompany

b. Your PROGRAM SOURCE CODE for the new subroutine CloseAllOutlets

c. SCREEN CAPTURE(S) showing the required test

Task 10	(max. 11 marks)
This question refers to a new class, called FoodTruck, as well as the subroutine ProcessDayEnd in the Company class.
Create a new class, called FoodTruck, which inherits from the class Outlet. As well as the inherited subroutines and attributes, FoodTruck should include a new subroutine called Move. Movement should take place in a random direction, moving one 'square' north, south, east or west. There is no need to validate the food truck’s movement, which is permitted to leave the settlement as a result of its XCoord and YCoord values being beyond the settlement’s bounds.
The constructor for FoodTruck should take XCoord and YCoord integers as parameters, then pass these to the superclass constructor along with a value of 10 for capacity.
Change ProcessDayEnd so that the move subroutine is called for any outlets that are of type FoodTruck.
Test that the changes you have made work:
· Modify the call to the Outlet class's constructor within the OpenOutlet subroutine of the Company class; it should read as follows:

Dim NewOutlet As New FoodTruck(X, Y)

· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· leave the second prompt blank, to indicate user-defined companies
· enter 1 when asked for a number of companies
· enter the company name 'Taco Truck'
· enter a starting balance of 30000
· enter 1 to indicate a fast-food restaurant
· enter 2 to display details of companies
· enter 6 to advance to the next day
· enter 2 to display details of companies

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the new class FoodTruck

b. Your PROGRAM SOURCE CODE for the amended subroutine ProcessDayEnd

c. SCREEN CAPTURE(S) showing the required test, ensuring that the location of the food truck is visible after each entry of ‘2’ in the main menu

Task 11	(max. 15 marks)
This question refers to the subroutine GetIndexOfCompany within the Simulation class.
Currently, when a company is searched for using this subroutine, the whole company name is required in order to generate a match.
Change GetIndexOfCompany so that if the user enters a search term that is contained within the name of one company, the index of that company is returned. If the text is contained within the names of multiple companies, the user should be presented with all matching company names before being asked to type one of them in full in order to select it.
The subroutine should continue to be non-case-sensitive, and a search for a company that finds nothing, or an attempt to select a matching company that doesn't actually match one of the search results, should still return a value of -1.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 3 for 'modify company'
· enter a lower-case 't' for the company name
· type 'Paltry Poultry' when asked to type the name of a company

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine GetIndexOfCompany

b. SCREEN CAPTURE(S) showing the required test

Task 12	(max. 7 marks)
This question refers to the subroutine CloseOutlet in the Company class.
Currently, closing an outlet incurs no expense on the part of the company.
Change CloseOutlet so that a company's balance decreases for each outlet that is closed. The cost of closing the outlet depends on both the type of the company and the capacity of the outlet being closed. Taking 'capacity' as being the number of seats in an outlet, the costs of closing an outlet are as follows:
Fast-food outlet: 75 per seat
Family outlet: 50 per seat
Named chef outlet: 150 per seat
Test that the changes you have made work:
· [bookmark: _GoBack]run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 2 for 'display details of companies
· enter 3 for 'modify company'
· enter 'Paltry Poultry'
· enter 2 for 'close outlet'
· enter 4 when prompted for an ID
· enter 2 for 'display details of companies'

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine CloseOutlet

b. SCREEN CAPTURE(S) showing the required test, ensuring all details for Paltry Poultry's outlets are visible after each request of 'display details of companies'

Task 13	(max. 8 marks)
This question refers to the subroutines DisplayMenu and Run in the Simulation class.
Currently, it is possible to add a company to a simulation, but not to remove one.
Change DisplayMenu to include an additional option: '5. Remove company'.
Change Run so that if option 5 is selected, the user is prompted for the name of the company they wish to remove. After the user has entered the name of the company, that company's index should be obtained via GetIndexOfCompany. The program should repeatedly ask them for a company name until either a valid name has been entered, or 'cancel' (any combination of upper case and lower case) has been entered.
If 'cancel' is entered, the user should be returned to the main menu. Otherwise, the company with a name matching the user entry should be removed from the simulation, and the user should be returned to the main menu.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 5 for 'remove company'
· type CANCEL (all in upper case) when prompted for the name of a company
· enter 5 for 'remove company'
· type 'Paltry Poultry' when prompted again for the name of a company
· type 2 for 'display details of companies'

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine DisplayMenu

b. Your PROGRAM SOURCE CODE for the amended subroutine Run

c. SCREEN CAPTURE(S) showing the required test

Task 14	(max. 20 marks)
This question refers to the subroutines DisplayMenu and Run in the Simulation class, as well as two new subroutines: RunToTarget in the Simulation class, and GetBalance in the Company class.
Currently, the simulation runs day by day, regardless of the effects of any changes.

Create a new subroutine in the Company class called GetBalance, which should accept no parameters and return the value of the balance attribute.

Create a new subroutine in the Simulation class called RunToTarget. This subroutine should prompt the user for upper and lower limits, storing them in integer variables called UpperLimit and LowerLimit. No validation is required for user input.

The simulation should run, via repeated calls to ProcessDayEnd in the Simulation class, until one company has a balance either equal to or above UpperLimit or equal to or below LowerLimit, using calls to the new subroutine GetBalance. At this point, there should be no additional calls to ProcessDayEnd, and the program should output the name of the company, its balance and the number of days that have elapsed since the beginning of the simulation.

In the event that multiple companies reach UpperLimit and/or LowerLimit at the same time, the program need only display the details of one of the companies.
Change DisplayMenu to include an additional option: '5. Run to target'.
Change Run so that if the user enters option 5, a call is made to RunToTarget.
Test that the changes you have made work:
· run the Skeleton Program
· leave the first prompt blank, to indicate a normal-sized settlement
· enter D at the next prompt for default companies
· enter 5 for 'run to target'
· enter 0 when prompted for the lower limit
· enter 100000 (one hundred thousand) when prompted for the upper limit

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended subroutine DisplayMenu

b. Your PROGRAM SOURCE CODE for the amended subroutine Run

c. Your PROGRAM SOURCE CODE for the new subroutine RunToTarget

d. Your PROGRAM SOURCE CODE for the new subroutine GetBalance

e. SCREEN CAPTURE(S) showing the required test; only the final 'events' section needs to be included

Task 15	(max. 14 marks)
This question refers to a new class called CitySettlement, as well as the constructor of the Simulation class.
Currently, a new Settlement object is constructed by way of calls to the constructor of either Settlement or LargeSettlement.
Create a new class called CitySettlement, which inherits from LargeSettlement. Its constructor should have the same parameters as the LargeSettlement constructor, and should call the LargeSettlement constructor, passing on its own parameters.
CitySettlement should include a subroutine called AddHousehold, which should override the AddHousehold subroutine of the Settlement class. This new subroutine should select a random location within the city, then select a random integer between 2 and 20 inclusive. This number of new households should then be created and added to the settlement at the single location generated.
This is to model families living in apartment blocks. In this class, creating a settlement with 100 households should have the effect of creating 100 such apartment blocks, with each block containing between 2 and 20 households. This means that a 250-household CitySettlement will contain more than 250 households, as it should contain 250 blocks of households.
Change the constructor of the Simulation class to present the user with a choice of ‘a large settlement’, ‘a normal-sized settlement’ or ‘a city settlement’ (the order is unimportant). If a city settlement is selected, the user should be prompted for additional x-size, y-size and households values. These values should then be sent as parameters to a call to the new CitySettlement constructor.
Test that the changes you have made work:
· run the Skeleton Program
· at the prompt, indicate a city settlement
· enter a value of zero for each of the additional prompts
· enter D for default companies
· enter 1 for 'Display details of households'

	Evidence that you need to provide:
a. Your PROGRAM SOURCE CODE for the amended Simulation constructor

b. Your PROGRAM SOURCE CODE for the new class CitySettlement

c. Your PROGRAM SOURCE CODE for the AddHousehold subroutine of the Settlement class

d. SCREEN CAPTURE(S) showing the required test, ensuring at least the last five households are visible

Food Magnate Simulation (Programming Tasks)	Page 15 of 15	ZigZag Education 2019
