[bookmark: _Toc415649027][bookmark: _Toc469398931][bookmark: _GoBack]Food Magnate Simulation

Programming Tasks – Suggested Mark Scheme
Note that the following are recommended solutions, and not an exhaustive list of all possible solutions to each task. The marking guidance should be used as a guide only. Discretion should be used in awarding credit where alternative solutions are given.

Task 1	(max. 6 marks)
1 mark	loop set up in ModifyCompany to repeat until something other than 'C', '1', '2' or '3' is entered
1 mark	loop must contain call to menu display and user input, and must not begin with choice uninitialised
[image:]
1 mark	selection statement to catch entry of an upper-case 'C'
1 mark	‘operation cancelled’ displayed within selection clause
1 mark	all inputs, old and new, dealt with correctly
[image:]
1 mark 	screenshot showing 'X' causing a repeat of the loop and 'C' causing redisplay of main menu:
[image:]
Task 2	(max. 9 marks)
1 mark	Boolean or equivalent to store whether a collision has occurred
1 mark	outer loop attempts to continue until valid location is found, even if unsuccessful (intent must be clear)
1 mark	random location generated inside outer loop
1 mark	inner loop to iterate through Households list
1 mark	selection statement to determine whether location is already occupied
1 mark	flag set in inner loop to store that a location was already occupied
1 mark	Boolean (placed in this code) set to reflect no collision occurring
1 mark	when outer loop ends, X and Y will always represent a non-colliding location
[image:]
1 mark	eight household locations are all different:
[image:]

Task 3	(max. 7 marks)
1 mark	new subroutine declared correctly in the Outlet class
1 mark	MaxCapacity multiplied by the parameter (name of parameter unimportant)
[image:]
1 mark	call to generate a random number that could be appropriate to the 40/35/25 distribution in ExpandOutlet
1 mark	probabilities are actually 40%, 35% and 25%
1 mark	correct parameter passed to ExtendCapacity in all circumstances
1 mark	only output message in these circumstances is 'outlet max capacity expanded'
[image:]
1 mark correct message output, and Paltry Poultry outlet 4 max capacity doubled, tripled or quadrupled:
[image:]
[image:]
[image:]

Task 4	(max. 8 marks)
1 mark	new subroutine, correct name, type and parameters in the Settlement class
1 mark	integer to store number of leavers
1 mark	loop to iterate over all households
1 mark	selection structure, based on 2% probability
1 mark	removal of household from list, inside selection clause
1 mark	integer variable incremented inside selection clause, and returned after loop
[image:]
1 mark	call to ProcessLeavers as the final instruction in ProcessDayEnd
[image:]
1 mark	screenshot displays number of households removed, which might be the number by itself (i.e. without the text 'households left the settlement') and/or zero:
 [image:]

Task 5	(max. 7 marks)
1 mark	new input message within code executed when user enters '3'
1 mark	loop to iterate over all companies in the list
1 mark	output to contain call to company's GetName subroutine
1 mark	output to display 1-based indices instead of 0-based indices
1 mark	user input stored in the index variable
1 mark	user input decremented
[image:]
1 mark	user input should now be based on a list, with outlets numbered 1, 2, 3; final outlet of 'Paltry Poultry' should have a capacity equal to its max capacity:
[image:]
[image:]

Task 6	(max. 5 marks)
1 mark	subroutine correctly declared as a constructor
1 mark	correct parameters declared
1 mark	XCoord and YCoord set to random integers between 0 and MaxX/MaxY inclusive
[image:]
1 mark	the rest of the subroutine executes as normal. A. call to a new subroutine (to which existing constructor 	might call) that contains the extra lines. R. if call is made to other constructor.
[image:]
1 mark	screen capture shows values for outlet coordinates that are all 10 or lower:
[image:]

Task 7	(max. 7 marks)
1 mark	option 5 correctly added in DisplayMenu
[image:]
1 mark	selection structure in Run captures an input of 5
1 mark	any suitable prompt for the user to enter a number of days
1 mark	integer variable set to user input
1 mark	loop that runs the correct number of times
1 mark	call to ProcessDayEnd inside the loop and no other code
[image:]
1 mark	three days' worth of financials and events should be displayed, although if the previous balance for Paltry 	Poultry is anything other than 17000, and would match code, credit can be given:
[image:]

Task 8	(max. 9 marks)
1 mark	prompt updated to include reference to '4' generating a random company
1 mark	loop updated to include '4' as a terminating condition
[image:]
1 mark	updating selection structure to ensure 3 results in 'named chef'
1 mark	addition to selection structure to catch 4 or 'else' (i.e. not 1, 2 or 3)
1 mark 	random number generated, even if likelihoods are not evenly distributed
1 mark	selection structure sets restaurant type according to random number
1 mark	three company types are equally likely to be created
1 mark	additional code does not impede code from the Skeleton Program
[image:]
1 mark	input of '4', 'Random Restaurant' and '50000', resulting in a company of any type being created
[image:]
[image:]

Task 9	(max. 6 marks)
1 mark	new subroutine created, with no parameters and no return
1 mark	loop to iterate over all outlets in the Outlets list
1 mark	call to CloseOutlet for each outlet
[image:]
1 mark	selection statement in ProcessDayEnd to check for balance of less than zero, immediately before return statement
1 mark	call to CloseAllOutlets in selection structure
[image:]
1 mark	entering '2' in the main menu should reveal that 'Bankrupt Burgers' has no outlets:
[image:]

Task 10	(max. 11 marks)
1 mark	class definition, which includes inheritance
1 mark constructor correctly declared, with two parameters
1 mark	call within constructor to the Outlet constructor, passing correct values
1 mark	Move subroutine declared
1 mark	random number generated
1 mark	selection statement uses four different possible values of random number
1 mark	each of north, south, east and west correctly simulated
[image:]
1 mark	either creation of loop to iterate through outlets in ProcessDayEnd subroutine, or an attempt to use the existing loop to call move, even if syntactically invalid
1 mark	selection statement to check whether an outlet is an instance of a FoodTruck
1 mark	move subroutine called for all FoodTruck objects and only FoodTruck objects
[image:]
1 mark	screen captures show a difference of 1 in either X or Y coordinates between days:
[image:][image:]
[image:]
Task 11	(max. 15 marks)
1 mark	data structure created to store indexes
1 mark	selection structure has been changed from 'equals' to 'contains' or equivalent
1 mark	inside selection structure, adding the index to the data structure
[image:]
1 mark	selection structure to check for only a single match, A. if 'else' by process of elimination
1 mark	correct index returned for a single match
[image:]
1 mark	selection structure to check for multiple matches, A. if 'else' by process of elimination
1 mark	prompt for user entry, either before or after attempt to display matches
1 mark	loop to iterate through all matches in an attempt to display them
1 mark	name of each matching outlet displayed
1 mark	user input requested only if multiple matches have been found
1 mark	loop to iterate through the matches in an attempt to compare with user input
1 mark	comparison ('equals', not 'contains') is made inside the loop, with case ignored
1 mark	correct index returned in the event of a match
1 mark	value of -1 returned if no matches are found or if second entry does not match
[image:]

(continues on next page)

1 mark	screen capture displays 'Paltry Poultry' and 'Ben Thor Cuisine', with 'Paltry Poultry' entered and accepted:
[image:]

Task 12	(max. 7 marks)
1 mark	outlet with a matching ID is accessed
1 mark	number of seats is set to a call to GetCapacity
1 mark	selection structure uses Category attribute of the Company class
1 mark	cost per seat is set correctly for all categories
1 mark	balance is decremented by the cost per seat multiplied by the number of seats
1 mark	the original code, to remove the outlet and check for zero outlets, should run unchanged
[image:]
1 mark	current balance of Paltry Poultry should change from 17000 to 8000, and there should be one outlet fewer:
[image:][image:]

Task 13	(max. 8 marks)
1 mark	additional line added to DisplayMenu with correct number and text
[image:]
1 mark	addition of '5' to the selection structure in run
1 mark	prompt for company name and storage of user input in a string variable
1 mark	selection structure to check whether the index either is or is not -1
1 mark	removal of company at the correct index, only if the index is not -1
1 mark	loop will terminate if the loop is not -1
1 mark	loop will terminate if 'cancel', in any combination of upper case / lower case, is entered
[image:]
1 mark	entering 'CANCEL' returns user to the main menu; entering 'Paltry Poultry' results in only two companies being present in the simulation – AQA Burgers and Ben Thor Cuisine:
[image:][image:]

Task 14	(max. 20 marks)
1 mark	GetBalance declared in the Company class, with no parameters and correct type
1 mark	correct return statement, R. if any additional code
[image:]
1 mark	additional option added to DisplayMenu
[image:]
1 mark	selection structure modified to include '5'
1 mark	call to new RunToTarget subroutine if '5' is entered
[image:]
1 mark	new RunToTarget subroutine declared
1 mark	user prompted for an upper limit and a lower limit
1 mark	each user input stored as a separate integer
1 mark	variable names UpperLimit and LowerLimit used as instructed
1 mark	variables for number of days, balance and company name, of appropriate types, declared
[image:]
1 mark	loop to run until a balance is equal to or above the upper limit, or equal to or below the lower limit
1 mark	loop to iterate over each company in the simulation
1 mark	comparison with both upper and lower limits
1 mark	call to ProcessDayEnd once within each iteration
1 mark	no call to ProcessDayEnd if a balance has already reached termination condition, including if the 	termination condition was already reached by the start of the first loop (i.e. zero days should be a possibility)
1 mark	number of days incremented within each iteration

(continues on next page)

[bookmark: _Hlk25350907]1 mark	calls to GetName and GetBalance have occurred before loop terminates
[image:]
1 mark	values for the company's name and balance, and the number of days, are output
1 mark	output values are correct under all circumstances
[image:]
1 mark	screen evidence showing that multiple days have passed, and the balance is either >= 100000 or <= 0:
[image:]

Task 15	(max. 14 marks)
1 mark	class definition with correct identifier, which inherits from LargeSettlement
1 mark	valid constructor with three integer parameters
1 mark	valid call within constructor to constructor of superclass
1 mark	subroutine AddHousehold declared with Overrides modifier
1 mark	generation of random number, within AddHousehold, between 2 and 20 inclusive
1 mark	generation of random X and Y coordinates within the settlement (easiest via a call to the Settlement class's GetRandomLocation subroutine, but any valid approach can be credited)
1 mark	loop set up that will iterate once for each household in this location (integer between 2 and 20)
1 mark	each new household, within the loop, added to the Households list
[image:]
[bookmark: _Hlk25503104]1 mark	Overridable modifier added to pre-existing AddHouseholds subroutine
[image:]

(continues on next page)

1 mark	first prompt of the simulation amended to allow user to select a city settlement
1 mark	user selecting a city settlement results in prompts for additional X and Y coordinates and number of households
1 mark	user selecting a city settlement results in call to CitySettlement constructor
1 mark	other inputs should continue to work as previously (i.e. new code does not disrupt old code)
[image:]
1 mark	screen capture should show consecutive households at the same location
[image:]

Food Magnate Simulation (Programming Tasks MS)	Page 1 of 18	ZigZag Education 2019
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image1.png

image2.png

