

Mark Scheme

Mock Paper Set 2

Pearson Edexcel GCE Further Mathematics Decision Mathematics 1 Paper 9FM0_3D

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Mock paper Publications Code 9FM0_3D_Mock paper_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response they wish to</u> <u>submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2+bx+c) = (mx+p)(nx+q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*)

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question	Scheme Marks AO							
1. (a)	Two graphs are isomorphic when they contain the same number of vertices of the same degree connected in the same way.	B1	1.2					
		(1)						
(b)	E.g.							
		M1 A1	1.1b 1.1b					
		(2)						
(c)	Column (or row) totals for adjacency matrix are: 7, 5, 4, 5, 4, 4, 3	M1	1.1b					
	Graph is neither as there are more than two nodes of odd degree.	Al	2.4					
		(2)						
(d)	E.g. Hamiltonian cycle: A B C D F E G A (graph redrawn with Hamiltonian cycle as vertices of polygon).	B1	1.1b					
	List 1 List 2	M1	2.1					
	AC BG	M1	2.1 1.1b					
	BE	1411	1.10					
	BD							
	AD							
	AF							
	CF crosses AD and BD which are in separate lists so graph is not planar	A1	2.4					
		(4)						
		Total:	9 marks					
	Notes							
a1B1	CAO							
b1M1 b1A1	Correct arcs drawn – allow one error (one incorrect arc, one missing arc, one er CAO	xtra arc).						
c1M1 c1A1	Attempt to sum columns or rows or to list the degree of each node or to identify degree Correct conclusion and reason.	y >2 nodes	of odd					
d1B1	Any correct Hamiltonian cycle – must contain 8 vertices, start and finish at the same node and							
d1M1 d2M1 d1A1	every vertex must appear only once except the start and end vertex. Creates two lists of arcs (with at least three arcs in each list) One arc identified as crossing arcs in both lists CAO including correct conclusion.							

Question	Scheme	Marks	AOs
2. (a)	Sum of lengths = $40 + n$	M1	1.1b
	$40 + n > 13 \times 4$ n > 12 so 12 < n \le 13	A1	2.2a
		(2)	
(b)			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	1.1b
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	1.1b
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1ft	1.1b
	No change in final pass so list is sorted.	A1	1.1b
		(4)	
(c)	Bin 1: <u>n</u>	M1	1.1b
	Bin 2: <u>12</u> Bin 3: 9 4	AI	1.10
	Bin 4: <u>7</u> <u>5</u>		
	Bin 5: 3		
(4)	Wasted wood -25 n	(2)	
(u)	Income from re-sale of wasted wood = $0.8(25 - n)$	M1	2.1
	Cost of wood planks = $5 \times 32 = 160$ Posulting wood expanse = $(160^{\circ} - (0.8(25 - n)^{\circ}) = 140 + 0.8n$		
	140 + 0.8n = 150.16	M1	2.1
	n = 12.7	A1	2.2a
		(3)	
		Total: 1	1 marks
	Notes		
a1M1	Use of sum of lengths in a lower bound calculation involving 4		
a1A1	CAO		
b1M1	Bubble sort, consistent direction, 3 in place		
b1A1	1 st and 2 nd passes correct		
b2A1ft	3^{rd} and 4^{th} passes correct		
UJAI	cso menung enner son complete statement of 5 pass.		
c1M1 c1A1	<i>n</i> , 12, 9, 7, 5 placed correctly CAO		
d1M1 d2M1 d1A1	Calculation of income from wasted wood in terms of n Determines resulting wood expense in terms of n and equates to 150.16 CAO		

Question	Scheme Marks					
3. (a)	A Hamiltonian cycle is a closed path that passes through every vertex exactly once, returning to the start vertex.	B1	1.2			
		(1)				
(b)	3 + 5 + 3 + 6 + 4 + 7.5 = 28.5	B1	1.1b			
	Upper bound = 28.5					
		(1)				
(c)(i)	ACEFBDA and ACBDFEA	B1	1.1b			
(ii)	Upper bounds are $21 + d$	B1	1.1b			
	and 26 respectively					
		(2)				
(d)	e g PMST: AD AC BD EC	(2) R1	1 1b			
(u)	Lower bound = $d + 3 + 4 + 5 + 6(BF) + 3(EF)$	M1	1.10 1.1b			
	=21+d	A1	2.2a			
		(3)				
(e)	Lower bound and upper bound are equal so optimal time is $21 + d$	M1	2.1			
	$21 + d \le 26$ since upper bound cannot be less than optimal value/lower bound	M1	2.4			
	So $3 < d \le 5$	A1	2.2b			
		(3)				
		Total: 1	0 marks			
	Notes					
a1B1	CAO					
b1B1	CAO					
c1R1	Two correct NN routes					
c2B1	Two correct corresponding upper bounds for total walking time					
d1B1	A correct residual minimum spanning tree found including AD					
d1M1 d1A1	Attempt to find lower bound using: weight of tree + two arcs of least weight fro A MST found and BF and EF or DF and EF added to obtain correct lower bour	om F nd				
e1M1 e2M1 e1A1	Reasoning that since lower bound = upper bound, $21 + d$ must be optimal time Deduces that ' $21 + d' \le$ '26' with reasoning CAO					

Question	Scheme	Marks	AOs
4. (a)	Odd nodes: A, G, J, K	M1	3.1b
	A(H)G + J(CE)K = 113 + 125 = 238	A1	1.1b
	A(H)J + G(FE)K = 145 + 92 = 237	A1	1.1b
	A(HGFE)K + G(F)J = 205 + 114 = 319		
	Shortest route = $1459 + 237 = 1696$ (m)	dM1	1.1b
	Repeated arcs: AH HJ GF FE EK	A1	2.2a
		(5)	
(b)	Need to repeat shortest pairing not including K so repeat AH & HG	M1	2.4
	New route length = $1459 + 113 = 1572$	dM1	2.1
	Saving = 1696 - 1572 = 124 (m)	A1	2.2a
		(3)	
		Total:	8 marks
	Notes		
a1M1	Three distinct pairings of the correct four odd nodes		
a1A1	Two correct pairings and totals		
a2A1	Three correct pairing and totals		
a2dM1	1457 + shortest pairing		
a3A1	CAO		
b1M1 b2dM1 b1A1	Reasoning to include the need to repeat the shortest pairing not including K and 1457 + shortest pairing not including K CAO	l AG ident	ified.

Question	Scheme									Marks	AOs		
5. (a)	The constraints contain a mixture of \leq and \geq inequalities							B1	3.5b				
									(1)				
(b)	$3x - 2$ $x + 3y$ (s_1, s_2)	$2y + s_1 = 1$ $y - s_2 + a_1$ $y - a_1 \ge 0$	100 = 60								B1 B1	1.1b 2.5	
										(2)			
(c)	P = 2x So $P =$ So $P -$	$-y - Ma_1$ $2x - y - Ma_1$ $(2 + M)x$	(M and M) = M(60 - x) + (3M - 1)	bitraril -3y + s 1)y + M	y larg (2) $s_2 = -$	e) - 60 <i>M</i>						M1 A1	2.1 1.1b
	b.v.	x	у		<i>s</i> ₁	S	<i>s</i> ₂		<i>a</i> ₁		Row Ops	M1 A1	3.3 2.2a
	<i>S</i> 1	3	-2		1	0)	0)	100			
	a_1	1	3		0		1	1		60			
	Р	- (2 + <i>M</i>)	- (3 <i>M</i> -	1)	0	M	1 0)	-60 <i>M</i>			
/ • \ /• \		I					1			1	1	(4)	1 11
(d)(i)	b.v.	x	у	<i>S</i> 1		<i>S</i> 2	C	<i>l</i> 1	Val	ue R	ow Ops	M1 A1	1.1b
	<i>S</i> 1	$\frac{11}{3}$	0	1		$-\frac{2}{3}$		$\frac{2}{3}$ 140		D I	$R_1 + 2R_2$	B1	2.4
	у	$\frac{1}{3}$	1	0		$-\frac{1}{3}$	-	$\frac{1}{3}$	20)	$R_2 \div 3$		
	Р	$-\frac{7}{3}$	0	0		$\frac{1}{3}$	М	$-\frac{1}{3}$	-20	0 R ₃ +	$(3M-1)R_2$		
(ii)	Not optimal because there are negative values in the <i>P</i> row.								A1	2.2a			
												(4)	1 1
						N	otes					1 otal: 1	1 marks
a1R1	CAO					14	0103						
b1B1 b1B1	At least one correct constraint Both constraints correct												
c1M1 c1A1	Attempt to modify objective function using M Elimination of artificial variable to correctly rewrite objective function in terms of x , y , and the												
c2M1 c2A1	slack and surplus variables. Profit row correctly filled in CSO for table.												
d1M1 d1A1 d1B1 d2A1	Correc CAO The co Correc	ct pivot lo (ignoring orrect row ct conclus	ocated, at row ope operation.	tempt f rations ons exp	o div) laine	ide ro d eith	ow. I er in	f neg term	ative 1s of	value u	sed then no or new pivo	marks t rows	

Question	Scheme	Marks	AOs
6. (a)	t = 1.5	B1	1.1b
	u = 4.5	B1	1.1b
	v = 3.5		
	min time = 7 (hours)	B1	1.1b
		(3)	
(b)	e.g. Activities which satisfy:	B1	1.2
	Late event time at end point – early event time at start point – activity		
	duration = 0	D 1	1 11.
	Chucai pauls: BFJL and CFJL	DI	1.10
		(2)	
(c)		(_) M1	21
(0)	0 1 2 3 4 5 6 7 8	A1	1 1b
		A1	1.1b
	G M		
	0 1 2 3 4 5 6 7 8		
		(3)	
(d)	e.g.	M1	3.1b
	At time = 3 A, B, C, D can have been completed leaving E, F, G, H, J, K, L		
	For 3 < time < 3.5 E, F, G must be taking place so 3 volunteers required		
	For 3.5 < time < 4 G and J must take place (and H can be delayed) so 2	A1	2.4
	volunteers required.		
	For 4 < time < 5 J must take place and H can take place (and K can be deleved) so 2 volunteers required		
	For $5 < time < 61$ must take place and K can take place so 2 volunteers	Α1	2.29
	required.	711	2.24
	So only two volunteers are required after time = 3.5 which is 2.30 pm.		
		(3)	
		Total: 1	1 marks
	Notes		
a1B1	Any two of <i>t</i> , <i>u</i> and <i>v</i> correct		
a2B1	All of t , u and v correct		
a3B1	CAO		
h1R1	CAO		
h2R1	Both critical paths stated correctly		
	20th Childer parts stated confectly		
c1M1	At least 8 activities placed with at least 3 floats. Scheduling diagram scores MO). Clear dist	inction
	must be shown between the notation used for an activity and its float.		
c1A1	Critical activities correct and three non-critical activities correct		
c2A1	CSO for Gantt chart		

d1M1	Either a consideration of all times when more than 2 volunteers are required or consideration of
	all times when only two volunteers are required
d1A1	Must give an explanation that refers to all times and activities for when more than 2 volunteers
	are needed and all times and activities for when only 2 volunteers are required.
d2A1	2.30pm stated

Question	Scheme	Marks	AOs
7. (i)	Maximise $6g + 10p$ Subject to:	B1	3.3
	$g + p \le 250$ $7p \le 3g$ $6p \ge g$	B1 M1A1 B1	3.3 3.3,1.1b 3.3
	$(g, p \ge 0)$	(5)	
(ii)(a)	y x = 300 x = y = 250	B1 B1 B1	1.1b 1.1b 1.1b
	Defined where $7x = 13y$ and $x + y = 250$ intersect $x = 162.5$, $y = 87.5$ x and y must be integers.	B1 dM1 A1	3.1a 3.4 1.1b
	r + v < 250 $7r > 13v$ D	M1	3.5a
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	1.1b
	162 88 Y N		
	163 87 Y Y 761		
	163 88 N		
	Ishi should sell 163 Type A tickets and 87 Type B tickets	A1	3.2a
(b)	So maximum amount of money = $\pounds761$	A1	2.2a
		(10)	
		Total: 1	5 marks
	Notes		
a1B1 a2B1 a1M1 a1A1 a3B1	CAO objective function + maximise CAO: $g + p \le 250$ $7p \square 3g$ where \square is any inequality or equals, or $3p \le 7g$ CAO: $7p \le 3g$ CAO: $6p \ge g$		

b1B1 b2B1	x + y = 250 drawn correctly – must pass within one small square of (0, 250) and (250, 0) 7x = 13y drawn correctly – must pass within one small square of (0, 0) and (260, 140)
b3B1	x = 5y drawn correctly – must pass within one small square of (0, 0) and (200, 60)
b4B1	Selects a suitable strategy to find the optimal vertex. Must see evidence of either the correct or reciprocal objective line, OR point testing of (162.5, 87.5) and $(\frac{625}{3}, \frac{125}{3})$ in their objective function for this mark.
b1dM1	Simultaneous equations used to find their V. Correct exact coordinates for V with no working can score this mark. This mark is dependent on all three constraint lines drawn correctly.
b1A1	Correct exact coordinates of V.
b2M1	Identifies need to consider integer values.
b3M1	An integer point around (162.5, 87.5) tested in both $x + y \le 250$ and $7x \ge 13y$
b2A1	CAO
b3A1	CAO