,,,,,,

SYN'&RESS®

1 YEAR UPGRADE)

BUYER PROTECTION PLAN /

VB.NET

Developer’s Guide

Develop and Deliver Enterprise-Critical Desktop and Web
Applications with VB.NET

« Step-by-Step Instructions for Installing and Configuring Visual Basic .NET
and Visual Studio .NET

- Hundreds of Developing & Deploying and Debugging Sidebars, Security
Alerts,and VB.NET FAQs

« Complete Coverage of the New Integrated Development Environment (IDE)

Cameron Wakefield
Henk-Evert Sonder

Wei Meng Lee series Editor
(1

(]

Global Knowledge L PORTABLE

SOLUTION!

RECOMMENDED READING

solutionsa@asyngress.com

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

= One-year warranty against content obsolescence due to vendor prod-
uct upgrades. You can access online updates for any affected chap-
ters.

» “Ask the Author”™ customer query forms that enable you to post
guestions to our authors and editors.

» Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

» Regqularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you're now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We're listening.

WWwWw.syngress.com/solutions

SYNGRESS®

http://www.syngress.com/solutions

SYN'BRESS®

[':.u:n ,_.;“ \L

1 YEAR UPGRADE ’WEAR‘.

BUYER PROTECTION PLAN /

¢

VB.NET

Developer’s Guide

Cameron Wakefield
Henk-Evert Sonder
Wei Meng Lee series Editor

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold
AS IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable case, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, and “Career Advancement Through Skill Enhancement®, are registered
trademarks of Syngress Media, Inc. “Ask the Author™,” “Ask the Author UPDATE™,” “Mission Critical™,”
“Hack Proofing™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of their
respective companies.

KEY SERIAL NUMBER
001 DL84T9FVT5
002 ASD524MLE4
003 VMERL3FG4R
004 SGD34WR75N
005 8LUVCX5N7H
006 NZSJONTEM4
007 BWUH5MR46T
008 2AS3R565MR
009 8PL8Z4BKAS
010 GT6Y7YGVFC

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

VB.NET Developer’'s Guide

Copyright © 2001 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or dis-
tributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and execut-
ed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1234567890
ISBN: 1-928994-48-2

Technical Editor: Cameron Wakefield
Series Editor: Wei Meng Lee
Co-Publisher: Richard Kristof
Acquisitions Editor: Catherine B. Nolan
Developmental Editor: Jonathan Babcock

Freelance Editorial Manager: Maribeth Corona-Evans
Cover Designer: Michael Kavish

Page Layout and Art by: Shannon Tozier

Indexer: Robert Saigh

CD Production: Michael Donovan

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

Acknowledgments

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying, and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing
their incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler, Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Anneke Baeten and Annabel Dent of Harcourt Australia for all their help.

David Buckland, Wendi Wong, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim,
Audrey Gan, and Joseph Chan of Transquest Publishers for the enthusiasm with
which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the
Syngress program.

Contributors

Todd Carrico (MCDBA, MCSE) is a Senior Database Engineer for
Match.com. Match.com is a singles portal for the digital age. In addition
to its primary Web site, Match.com also provides back-end services to
AOL, MSN, and many other Web sites in its affiliate program. Todd spe-
cializes in design and development of high-performance, high-availability
data architectures primarily on Microsoft technology. His background
includes designing, developing, consulting, and project management for
companies such as Fujitsu, Accenture, International Paper, and
GroceryWorks.com. Todd resides in Sachse, TX.

Mark Horninger (A+, MCSE+I, MCSD, MCDBA) is President and
founder of Haverford Consultants Inc. (www.haverford-consultants.com),
located in the suburbs of Philadelphia, PA. He develops custom applica-
tions and system engineering solutions, specializing primarily in Microsoft
operating systems and Microsoft BackOftice products. He has over 10
years of computer consulting experience and has passed 29 Microsoft
Certified exams. During his career, Mark has worked on many extensive
projects including database development, application development, train-
ing, embedded systems development, and Windows NT and 2000 project
rollout planning and implementations. Mark lives with his wife Debbie
and two children in Havertown, PA.

Tony Starkey is the Lead Software Developer for Lufkin Automation in
Houston, TX and is currently in charge of revamping, restructuring, and
redesigning, their award-winning, well analysis programs. He also provides
consulting services to other companies in the city. Tony specializes in
Visual Basic, VBScript, ASP, and GUI design. He has been the head
developer on several projects that have seen successful completion
through all cycles of software design. Tony holds a bachelor’s degree in
Computer Science from the University of Houston with a minor in
Mathematics. He is a highly respected expert in numerous online

developer communities, where he has oftered in excess of 3,000
Vii

viii

validated solutions to individuals, ranging from the novice to the
experienced Microsoft Certified Professional.

Henk-Evert Sonder (CCNA) has over 15 years of experience as an
Information and Communication Technologies (ICT) professional,
building and maintaining ICT infrastructures. In recent years, he has spe-
cialized in integrating ICT infrastructures with secure business applica-
tions. Henk’s company, IT Selective, works with small businesses to help
them develop high-quality, low cost solutions. Henk has contributed to
several Syngress books, including the E-Mail Virus Protection Handbook
(ISBN: 1-928994-23-7), Designing SQL Server 2000 Databases for .NET
Enterprise Servers (ISBN: 1-928994-19-9), and the upcoming book BizTalk
Server 2000 Developers Guide for NET (ISBN: 1-928994-40-7). Henk lives
in Hingham, MA with his wife Jude and daughter Lilly.

Jonothon Ortiz is Vice President of Xnext, Inc. in Winter Haven, FL.
Xnext, Inc. 1s a small, privately owned company that develops Web sites
and applications for prestigious companies such as the New York Times.
Jonothon is the head of the programming department and works together
with the CEO on all company projects to ensure the best possible solu-
tion. Jonothon lives with his wife Carla in Lakeland, FL.

Prasanna Pattam is an Internet Architect for Qwest Communications.
He is responsible for the overall architecture, design, development, and
deployment of the multi-tiered Internet systems using Microsoft
Distributed interNet Application Architecture. His expertise lies in devel-
oping scalable, high-performance enterprise Web solutions for Fortune
500 companies. At Qwest, Prasanna has helped to formalize methodolo-
gies, development standards, and best coding practices, as well as to men-
tor other developers. He has written technical articles for different Web
sites and also teaches advanced e-commerce courses. Prasanna holds a
master’s degree in Computer Science. He resides in Fairview, NJ.

Mike Martone (MCSD, MCSE, MCP+Internet, LCNAD) is a Senior
Software Engineer and Consultant for Berish & Associates

(www.berish.com), a Cleveland-based Microsoft Certified Solutions
Provider, Partner Level. In 1995, Mike became one of the first thousand
MCSDs and is certified in VB 3, 4, and 5. Since graduating from Bowling
Green State University with degrees in Computer Science and
Psychology, he has specialized in developing Visual Basic, Internet, and
Oftice applications for corporations and government institutions. Mike
has contributed to several study guides on Visual Basic and SQL 7 in the
best-selling certification series from Syngress. He lives in Lakewood, OH.

Robeley Carolina (MCP) is a Senior Engineer with Computer Science
Innovations, where his specialties include user interface design and devel-
opment. He has also served on the faculties of the Florida Institute of
Technology and Herzing College, teaching numerous mathematics and
computer science courses. Robley holds a bachelor’s degree in
Mathematics and a master’s degree in Management from the Florida
Institute of Technology. Robley currently resides in Palm Bay, FL and
would like to thank Pamela for her support.

Rick DeLorme (MCP) is a Software Consultant in Ottawa, Ontario,
Canada. He currently works for a small company developing logistics
applications with Visual Basic 6. He has worked on other large-scale
projects such as the Canadian Census of Population where we worked
with VB6, MTS, DCOM, and SQL Server. He is currently working
towards his MCSD. Rick would like to thank his fiancé Jenn for her
encouragement and support.

Narasimhan Padmanabhan (MCSD) is a software consultant with a
major software company. His current responsibilities include developing
robust testing tools for software. He holds a bachelors degree in
Commerce and is an application developer for ERP applications back
home in India. He lives with his wife Aarthi and daughter Amrita in
Bellvue, WA.

Technical Editor and Contributor

Cameron Wakefield (MCSD, Network+) is a Senior Engineer at
Computer Science Innovations, Inc. headquartered in Melbourne, FL
(www.csi.cc). CSI provides automated decision support and custom data
mining solutions. Cameron develops custom software solutions ranging
from satellite communications to data mining applications. He is currently
working on a neural network-based network intrusion detection system.
His development work spans a broad spectrum including C/C++,Visual
Basic, COM, ADO, SQL, ASP, Delphi, CORBA, and UNIX. Cameron
has developed a variety of Web applications including online trading sys-
tems and international gold futures site. Cameron has passed 10 Microsoft
certifications and teaches Microsoft and Network+ certification courses at
Herzing College (AATP). Cameron has contributed to a number of
Syngress books including Designing SQL Server 2000 Databases for .NET
Enterprise Servers (ISBN: 1-928994-19-9) and several MCSE and MCSD
study guides.

Cameron holds a bachelor’s of science degree in Computer Science
with a minor in Mathematics at Rollins College and is a member of
IEEE. He currently resides in his new home in Rockledge, FL with his
wife Lorraine and daughter Rachel.

Series Editor

Wei Meng Lee is Series Editor for Syngress Publishing’s .NET
Developer Series. He is currently lecturing at The Center for Computer
Studies, Ngee Ann Polytechnic, Singapore. Wei Meng is actively involved
in Web development work and conducts training for Web developers and
Visual Basic programmers. He has co-authored two books on WAP. He
holds a bachelor’s of science degree in Information Systems and
Computer Science from the National University of Singapore.

Xi

About the CD

This CD-ROM contains the code files that are used in each chapter of this book.
The code files for each chapter are located in a directory. For example, the files for
Chapter 9 can be found in Chapter 09/Chapter9 Beta2/Samples/XML/MyData.xsd.
The organizational structure of these directories varies. For some chapters, the files
are named by a number. In other chapters, the files are organized by the projects that
are presented within the chapter.

Chapters 4 and 5 contain sample code. These are not standalone applications, just
examples. Chapter 4 contains code samples for performing File I/O, using the
System.Drawing namespace for graphics and printing. Chapter 5 contains code sam-
ples for working with classes, string manipulation, and exception handling.

Chapter 6 contains the source files for two complete applications: one for per-
forming a simple draw command and one for using C# classes. Chapter 9 contains
the source code for several applications demonstrating how to use ADO.NET includ-
ing: using a Typed Data Set and using data controls. It also contains sample XML and
XSD dataset files.

Chapter 10 contains the source code for exercises that demonstrate how to create
Web applications. Most of these exercises build on each other.You will build a Web
form, then put controls on it. You will see how to use a DataGrid control on a Web
form. Then you will see how to use custom controls. Starting with Exercise 10.8, you
will create and use a Web service and in Exercise 10.11 you will create a sample
application.

Chapter 11 contains a sample calculator application to demonstrate debugging
and testing tools built into Visual Basic .NET. Chapter 12 contains a sample Digital
certificate for Web applications and a sample configuration file with security policies.
And lastly, Chapter 14 contains code for the ICalculator interface.

¥ | Look for this CD icon to obtain files used
in the book demonstrations.

Xii

Contents

From the Series Editor xx;(i

Chapter 1 New Features in Visual Basic .NET 1
Introduction
Examining the New IDE
Cosmetic Improvements
Development Accelerators

.NET Architecture

ASPAET
Updated A5 Engne
Vb Forms Enine

Framework Closses

stem.Math, System.lo, System.Data, Eic.

Common Longuage Rntime
Memory Manogement
Common Fype System

Garboge Collection

. of Object-Oriented Design il
ory of Object Orientation and VB 13

HyperText Transport Protocol 16
ple Object Access Protocol 17

Xiii

Xiv Contents

Security
Type Safety
Casting
Data Conversion
Bitwise Operations
New Compiler
Compiling an Executable
Architecture
File Management in Previous Versions of VB
File Management
Changes from Visual Basic 6.0
Variants
Variable Lower Bounds
Fixed Length Strings
NULL Propagation
Other Items Removed
Function Values
Short Circuits
Properties and Variables
Variable Lengths
Get and Set
Date Type
Detault Properties
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 2 The Microsoft .NET Framework

Introduction
What Is the .NET Framework?
Introduction to the Common Language Runtime
Using .NET-Compliant Programming Languages
Creating Assemblies

Using the Manifest

Compiling Assemblies
Assembly Cache
Locating an Assembly

17
18
18
19
20
20
20
21
21
22
23
23
23
23
23
24
24
25
25
25
26
26
27
28
28
31

33
34
34
35

39
42
45
45
45

NOTE

Visualization is still
key! Die-hard VB
programmers may
find themselves
having a hard time
visualizing all the
new concepts in
VB.NET (and we all
know that proper
logic visualization
plays a big role in
what we do).

Something that may

help is to think
about VB.NET as a
completely flexible
language that can
accommodate Web,
console, and
desktop use.

Contents

Private Assembly Files
Shared Assembly Files
Understanding Metadata
The Benefits of Metadata
Identifying an Assembly with Metadata
Types
Defining Members
Using Contracts
Assembly Dependencies
Unmanaged Assembly Code
Reflection
Attributes
Ending DLL Hell
Side-by-Side Deployment
Versioning Support
Using System Services
Exception Handling
StackTrace
InnerException
Message
HelpLink
Garbage Collection
Console I70
Microsoft Intermediate Language
The Just-In-Time Compiler
Using the Namespace System to Organize Classes
The Common Type System
Type Safety
Relying on Automatic Resource Management
The Managed Heap
Garbage Collection and the Managed Heap
Assigning Generations
Utilizing Weak References
Security Services
Framework Security
Granting Permissions

51
51
51
52
53
53
54
54
55
55
56
57
58
58
59
60
60
61
61
61
62
62
62
63
63
64
65
68
68
69
71
77
77
79
80
81

XV

xvi Contents

Installing Visual
Studio .NET

= T =
= Phase 1: Installing

Windows components
= Phase 2: Installing
Visual Studio .NET
= Phase 3: Checking for
service releases

Gaining Representation through
a Principal
Security Policy
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 3 Installing and Configuring
VB.NET
Introduction
Editions
Installing Visual Studio .NET
Exercise 3.1: Installing Visual Studio .NET
Installing on Windows 2000
The New IDE
Integrated Development Environment
Automation Model
Add-Ins
Exercise 3.2 Creating an Add-In Using
the Add-In Wizard
Wizards
Macros
Home Page
Project Options
Toolbox
Child Windows
Window Types
Arranging Windows
Task List
Exercise 3.3 Setting Up a Custom Token
TaskList Views
Locating Code
Annotating Code
Solution Explorer
Properties Window
Form Layout Toolbar
Hide/Show Code Elements

82
83
85
85
88

91
92
92
93
94
99

100

100
104

105
109
109
110
112
116
120
122
123
123
124
124
126
126
127
129
130
132

Developing &
Deploying...
_— =
Embrace Your
Parameters

VB.NET is insistent upon
enclosing parameters of
function calls within
parentheses regardless of
whether we are returning
a value or whether we are
using the Call statement.
It makes the code much
more readable and is a
new standard for VB
programmers that is
consistent with the
standard that nearly all
other languages adopted
long ago.

Contents

Web Forms
Intellisense
Customizing the IDE
Customizing the Code Editor
Customizing Shortcut Keys
Customizing the Toolbars
Exercise 3.4 Adding a New Toolbar to
the Existing Set
Exercise 3.5 Adding Commands to
Toolbars
Customizing Built-In Commands
Exercise 3.6 Creating an Alias
Customizing the Start Page
Accessibility Options
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 4 Common Language Runtime

Introduction
Component Architecture
Managed Code versus Unmanaged Code
Interoperability with Managed Code
System Namespace
File I70
Drawing
Printing
Common Type System
Type Casting
Garbage Collection
Object Allocation/Deallocation
Close/Dispose
Summary
Solutions Fast Track
Frequently Asked Questions

xvii

133
134
135
135
135
136

136

137
137
138
139
141
142
142
143

145
146
148
150
152
153
155
156
157
158
160
163
164
165
166
167
168

xviii Contents

NOTE

When porting Visual
Basic applications to
Visual Basic .NET, be
careful of the lower
bounds of arrays. If
you are using a for
loop to iterate
through the array,
and it is hard-coded
to initialize the
counter at 1, the first
element will be
skipped. Remember
that all arrays start
with the index of 0.

Chapter 5 .NET Programming
Fundamentals

Introduction
Variables
Constants
Structures
Program Flow Control
If... Then...Else
Select Case
While Loops
For Loops
Arrays
Declaring an Array
Multidimensional Arrays
Dynamic Arrays
Functions
Object Oriented Programming
Inheritance
Polymorphism
Encapsulation
Classes
Adding Properties
Adding Methods
System.Object
Constructors
Overloading
Overriding
Shared Members
String Handling
Error Handling
Summary
Solutions Fast Track
Frequently Asked Questions

171
172
173
175
176
178
178
182
184
186
187
188
189
191
192
196
196
197
197
198
198
200
201
201
202
203
205
206
210
213
214
217

Contents Xix

Chapter 6 Advanced Programming

Concepts 219
What Are Collections? Introduction 220
_— = Using Modules 221
Collections are groups of Utilizing Namespaces 222
like objects. Collections Creating Namespaces 222
are similar to arrays, but -
they don't have o be Understand_hng the Imports Keyword 226
redimensioned. You can Implementing Interfaces 229
use the Add method to Delegates and Events 232
add objects toa Simple Delegates 235
collection. Collections take .
a little more code to Multicast Delegates 236
create than arrays do, and Event Programming 236
sometimes accessing a Handles Keyword 236
collection can be a bit .
slower than an array, but Language Interoperability 237
they offer significant File Operations 239
advantages because a Directory Listing 239
collection is a group of Data Fil 241
objects whereby an array ata Fles
is a data type. Text Files 243
Appending to Files 246
Collections 246
The Drawing Namespace 248
Images 253
Printing 256
Understanding Free Threading 262
SyncLock 263
Summary 265
Solutions Fast Track 265
Frequently Asked Questions 267
Chapter 7 Creating Windows Forms 269
Introduction 270
Application Model 270
Properties 271
Manipulating Windows Forms 275
Properties of Windows Forms 275
Methods of Windows Forms 276
Creating Windows Forms 287

XX

Contents

Creating Dialog Boxes

= (<=2

. Create a form.
. Set the BorderStyle

property of the form to
FixedDialog.

. Set the ControlBox,

MinimizeBox, and
MaximizeBox
properties of the form
to False.

Customize the
appearance of the
form appropriately.

. Customize event

handlers in the Code
window appropriately.

Displaying Modal Forms
Displaying Modeless Forms
Displaying Top-Most Forms
Changing the Borders of a Form
Resizing Forms
Setting Location of Forms
Form Events
Creating Multiple Document Interface
Applications
Creating an MDI Parent Form
Creating MDI Child Forms
Exercise 7.1 Creating an MDI
Child Form
Determining the Active MDI
Child Form
Arranging MDI Child Forms
Adding Controls to Forms
Anchoring Controls on Forms
Docking Controls on Forms
Layering Objects on Forms
Positioning Controls on Forms
Dialog Boxes
Displaying Message Boxes
Common Dialog Boxes
The OpenFileDialog Control
The SaveFileDialog Control
The FontDialog Control
The ColorDialog Control
The PrintDialog Control
The PrintPreviewDialog Control
The PageSetupDialog Control
Creating Dialog Boxes
Creating and Working with Menus
Adding Menus to a Form
Exercise 7.2 Adding a Menu to a Form
at Design Time

288
289
289
289
291
292
294

297
297
298

298

299
299
300
301
303
304
304
305
306
306
306
309
311
313
315
316
321
322
323
323

323

Contents XXi

Dynamically Creating Menus 326
Exercise 7.3 Adding a Menu to a Form

at Design Time 326
Adding Status Bars to Forms 328
Adding Toolbars to Forms 330
Data Binding 332
Simple Data Binding 332
Complex Data Binding 333
Data Sources for Data Binding 333
Using the Data Form Wizard 334
Using the Windows Forms Class Viewer 338

Using the Windows Forms ActiveX Control
Importer 338
Summary 340
Solutions Fast Track 340
Frequently Asked Questions 344

Chapter 8 Windows Forms
Adding Items to Components and Controls 347
a Combo Box at Introduction 348
Design-Time Built-In Controls 348
_— = Label Control 351
1 Select the ComboBox LinkLabel Control 354
control on the form. TextBox Control 357
2. If necessary, use the Button Control 361
View menu to open CheckBox Control 364
:clciigcr)sv?ertles RadioButton Control 365
3. In the Properties RichTextBox Control 367
window, click the TreeView Control 369
Items property, then ListBox Control 371
click t.he ellipsis. . CheckedListBox Control 374
4. In String Collection R

Editor, type the first ListView Control 376
item, then press Enter. ComboBox Control 381
5. Type the next items, DomainUpDown Control 384
Z;i;szr;grﬁnter after NumericUpDown Control 386
6. Click OK. PictureBox Control 388

TrackBar Control 389

xxii Contents

XML Documents
_T =

XML documents are the
heart of the XML
standard. An XML
document has at least one
element that is delimited
with one start tag and one
end tag. XML documents
are similar to HTML,
except that the tags are
made up by the author.

DateTimePicker Control
Panel Control
GroupBox Control
TabControl Control
Creating Custom Windows Components
Exercise 8.1: Creating a Custom
Windows Component
Creating Custom Windows Controls
Exercise 8.2: Creating a Custom
Windows Control
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 9 Using ADO.NET

Introduction
Overview of XML
XML Documents
XSL
XDR
XPath
Understanding ADO.NET Architecture
Difterences between ADO and ADO.NET
XML Support
ADO.NET Configuration
Remoting in ADO.NET
Maintaining State
Using the XML Schema Definition Tool
Connected Layer
Data Providers
Connection Strings
Exercise 9.1 Creating a Connection
String
Command Objects
DataR eader
DataSet

391
394
396
397
399

399
403

404
407
407
408

409
410
411
411
411
412
412
412
414
414
415
415
415
416
417
418
418

419
421
425
426

NOTE

Web form controls
not only detect
browsers such as
Internet Explorer and
Netscape, but they
also detect devices
such as Palm Pilots
and cell phones and
generate appropriate
HTML accordingly.

Contents

Disconnected Layer
Using DataSet
Relational Schema
Collection of Tables
Data States
Populating with the DataSet Command
Populating with XML
Populating Programmatically
Using the SQL Server Data Provider
TDS
Exercise 9.2 Using TypedDataSet
Remoting
Data Controls
DataGrid
Exercise 9.3 Using TypedDataSet and
DataRelation
DataList
Repeater
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 10 Developing Web Applications
Introduction
Web Forms
A Simple Web Form
Exercise 10.1 Creating a Simple
Web Form
How Web Forms Differ from Windows
Forms
Why Web Forms Are Better Than
Classic ASP
Adding Controls to Web Forms
Exercise 10.2 Adding Web Controls to
a Web Form
Code Behind

xXiii

427
428
428
430
431
432
433
434
435
436
437
439
440
440

441
446
450
454
454
457

459
460
461
462

462

464

465
467

468
473

XXiv Contents

How Web Form Controls Difter from
Windows Form Controls
ASPNET Server Controls
Intrinsic Controls
Bound Controls
Exercise 10.3 Using the DataGrid
Control
Exercise 10.4 Customizing DataGrid
Control
Custom Controls
Validation Controls
Exercise 10.5 Using the Validation
Controls
Creating Custom Web Form Controls
Exercise 10.6 A Simple Custom Control
Exercise 10.7 Creating a Composite
Custom Control
Web Services
How Web Services Work
Developing Web Services
Exercise 10.8 Developing Web Services
Web Service Utilities
Service Description Language
Discovery
Proxy Class
Consuming Web Services from Web Forms
Exercise 10.9 Consuming Web Services
from Web Forms
Using Windows Forms in
Distributed Applications
Exercise 10.10 Consuming Web Services
from Windows Forms
Exercise 10.11 Developing a Sample
Application
Summary
Solutions Fast Track
Frequently Asked Questions

476
476
476
478

478

482
487
488

489
492
493

497
504
505
505
507
509
509
510
510
511

511

513

514

516

519

519
521

Contents XXV

Chapter 11 Optimizing, Debugging,

and Testing 523

Introduction 524

Debugging Concepts 524

Debug Menu 528

Watches 529

Breakpoints 531

Exceptions Window 532

Command Window 534

Conditional Compilation 536

Trace 538

What Are Watches? Assertions 540

= = Code Optimization 541

Watches provide us with a Finalization 542

mechanism where we can Transitions 542

:jn;te;i;ta\':vil:z::rij ci';uzlur Parameter Passing Methods 542

programs at runtime. They Strings 543

allow Us to see the values Garbage Collection 544

of variables and the values Compiler Options 544
of properties on objects.

In addition to being able Optimization Options 544

to view thes.e values, you Output File Options 544

\CIZPUZEO assign hew .NET Assembly Options 545

Preprocessor Options 546

Miscellaneous Options 546

Testing Phases and Strategies 546

Unit Testing 547

Integration Testing 547

Beta Testing 547

Regression Testing 548

Stress Testing 548

Monitoring Performance 548

Summary 550

Solutions Fast Track 551

Frequently Asked Questions 552

XXVi Contents

Within the .NET
Framework, Three
Namespaces Involve

Cryptography

= =2

1. System.Security
.Cryptography The
most important one;
resembles the
CryptoAPI
functionalities.

2. System.Security
.Cryptography .X509
certificates Relates
only to the X509 v3
certificate used with
Authenticode.

3. System.Security
.Cryptography.Xml For
exclusive use within
the .NET Framework
security system.

Chapter 12 Security

Introduction
Security Concepts
Permissions
Principal
Authentication
Authorization
Security Policy
Type Safety
Code Access Security
.NET Code Access Security Model
Stack Walking
Code Identity
Code Groups

Declarative and Imperative Security

Requesting Permissions
Demanding Permissions
Overriding Security Checks
Custom Permissions
Role-Based Security
Principals
WindowsPrincipal
GenericPrincipal
Manipulating Identity
Role-Based Security Checks
Security Policies
Creating a New Permission Set
Moditying the Code Group Structure
Remoting Security
Cryptography
Security Tools
Summary
Solutions Fast Track
Frequently Asked Questions

553
554
555
555
556
557
557
558
558
558
559
559
561
562
564
565
570
572
576
578
578
579
580
581
583
585
588
593
600
600
603
606
607
611

Contents XXVii

Chapter 13 Application Deployment 615
WARNING Introduction 616
You should under no Packaging Code 617
circumstance edit the Configuring the .NET Framework 622
Security.config and Creating Configuration Files 622
Enterprise.config files Machine/Administrator Configuration Files 623
directly. It is very Application Configuration Files 625
easy to compromise Security Configuration Files 626
the integrity of these Deploying the Application 629
files. Always use the .
Code Access Security Cgmmon Language Runtime 629
Policy utility Windows Installer 630
(caspol.exe) or the CAB Files 631
.NET Configuration Internet Explorer 5.5 632
tool; these will guard Resource Files 633
the integrity of the Deploying Controls 637
files and will also Summary 639
make a backup Solutions Fast Track 640
copy of the last Frequently Asked Questions 642

saved version.

Chapter 14 Upgrading Visual Basic

Applications to .NET 647
Introduction 648
Considerations Before Upgrading 648

Early Binding of Variables 649
Avoiding Null Propagation 650
Using ADO 651
Using Date Data Type 652
Using Constants 652
Considering Architecture Before Migration 653
Intranet/Internet Applications 653
Internet Information Server (IIS)

Applications 654
DHTML Applications 655
ActiveX Documents 655

Client/Server and Multi-Tier Applications 655
Single-Tier Applications 656

Data Access Applications 656

xxviii Contents

Avoiding Null
Propagation
_ =

Null propagation means
that if Null is used in an
expression, the resulting
expression is always Null.
In previous versions of
Visual Basic, the Null value
disseminated throughout
the expression.

Data Types

Variants

Integers

Dates

Boolean

Arrays

Fixed-Length Strings
Windows API Data Types

Converting VB Forms to Windows Forms

Control Anchoring

Keyword Changes

Goto

GoSub
Option Base
AND/OR
Lset

VarPtr
StrPtr

Def

Programming Difterences

Method Implementation
Optional Parameters
Static Modifier
Return Statement
Procedure Calls
External Procedure Declaration
Passing Parameters
ParamArray
Overloading
References to Unmanaged Libraries
Metadata
Runtime Callable Wrapper
COM Callable Wrapper
Properties
Working with Property Procedures
Control Property Name Changes
Detault Property

657
657
658
658
659
659
660
661
662
664
665
666
666
666
666
666
667
667
667
668
668
668
669
669
670
671
672
672
674
677
679
681
682
684
684
685
687

Contents XXix

Null Usage 690
Understanding Error Handling 690
Exercise 14.1: Using Error Handling 692

Data Access Changes in Visual Basic .NET 693
Dataset and Recordset 694
Application Interoperability 694
Cursor Location 695
Disconnected Access 695
Data Navigation 695
Lock Implementation 696
Upgrading Interfaces 696
Upgrading Interfaces from Visual Basic 6.0 699
Using the Upgrade Tool 703
Exercise 14.2 Using the Upgrade Wizard 703
Summary 708
Solutions Fast Track 709
Frequently Asked Questions 712

Index 713

From the Series Editor

2001 marks the 10th anniversary of Microsoft Visual Basic (VB). In May 1991,
Microsoft introduced Visual Basic 1.0. Microsoft’s plan was to use VB as a strategic
tool to encourage developers to write Windows applications.

With VB, Windows application development was no longer restricted to a privi-
leged few. Anybody with moderate programming capabilities was able to develop a
Windows application by dragging and dropping controls onto a form. In contrast to
the more prevalent C and C++ programmers who wrote obscure code, VB program-
mers concentrated on writing applications that were meant to be prototypes. It is
perhaps this ease of use and simplicity of language that gave VB the name of “toy”
language. This is not the case anymore.

VB has come a long way. Since version 1.0, it has evolved from a toy language to
a full-fledged Object-Oriented programming language. Today, with VB you are able
to do almost everything possible with other programming languages. VB i1s finally a
true-blue Object-Oriented language.

Visual Basic, Today and Tomorrow—VB.NET

With the announcement of the Microsoft .NET Framework in 2000, Microsoft has
firmly re-iterated its commitment to the Visual Basic language. With language fea-
tures such as inheritance, structured exception handling, and parameterized construc-
tors, Visual Basic programming has become more elegant, simplified, and
maintainable.

With Microsoft’s vision of a programmable Web and its announcement of the
NET Framework and Visual Studio.NET,VB.NET is poised to become the most
widely used language for developing Windows and Web applications.

XXXi

XXXii From the Series Editor

The Syngress .NET Developer Series

IVB.NET Developer’s Guide, part of the Syngress .INET Developer Series, is written
for Visual Basic programmers looking to harness the power of VB.NET’s new features
and functionality. Developers will appreciate the in-depth explanations of key con-
cepts and extensive code examples. This practical, hands-on book will make you a
productive VB.NET developer straight away!
I hope you will enjoy reading the book as much as the authors have enjoyed
writing it.
—IWei Meng Lee
Series Editor, Syngress .NE'T Developer Series

www.syngress.com

Chapter 1

New Features in

Visual Basic .NET

Solutions in this chapter:

» Examining the New IDE

.NET Framework

Common Language Runtime

Object-Oriented Language

Web Applications

‘Secu rity

Type Safety

New Compiler

Changes from Visual Basic 6.0

M Summary
M Solutions Fast Track

M Frequently Asked Questions

Chapter 1 * New Features in Visual Basic .NET

Introduction

Before we dig into the details of Visual Basic .NET, let’s take a look at an
overview of all the changes and new features. This new release is a significant
change from the previous version. It will take some effort to get used to, but I am
sure you will feel that the new features will make it worthwhile. Visual Basic
NET is more than just an upgrade from Visual Basic 6.0. As you would expect,
the Integrated Development Environment (IDE) has been enhanced with some
new features. All of the Visual Studio development tools will now share the same
environment. For example, you will no longer need to learn a different IDE
when switching between Visual Basic and Visual C++. Some nice features have
been added that many of us have been asking for to ease development.

Visual Studio .NET is now built on top of the .NET Framework. This will
be a significant change from Visual Basic 6.0. The .NET Framework takes appli-
cation development to viewing the Internet as your new operating system. Your
applications will no longer recognize hardware as a boundary limitation. This is
an evolution of the Windows DNA model. This new framework is built on open
Internet protocols for a standardized interoperability between platforms and pro-
gramming languages. The .NET Framework will also allow the creation of new
types of applications. Applications will now run using the Common Language
Runtime (CLR). All .NET applications will use this same runtime environment,
which allows your Visual Basic applications to run on equal ground with other
languages. The CLR allows Visual Basic to provide inheritance and free
threading, whose absence created two glaring limitations to Visual Basic
Applications. Visual Basic .NET is object-oriented. Everything is now an object,
and every object 1s inherited from a standard base class. Another benefit of the
CLR is a common type system, which means that all programming languages
share the same types. This greatly increases interoperability between languages.

The Internet has entered a new phase. First, it was used to display static Web
pages. Businesses soon found that this did not help them significantly. Next, the
Internet evolved to dynamic content and allowing electronic commerce. The
next step is to move towards complete applications running on the Internet.
Visual Basic .NET promotes these new Web applications. Web services allow
objects to be located anywhere on the Internet and to be called from any appli-
cation across the Internet (no more trying to get DCOM configured). Of course,
extending applications across the Internet will increase security risks. The .NET
Framework has many security features built-in to it to protect your applications.

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

Type safety is now enforced. This prevents code from accessing memory loca-
tions that it does not have authorization to access. This allows you to define how
your objects are accessed. Before code is run, it is verified to be type-safe. If it is
not type-safe, it will only run if your security policies allow for it.

Visual Basic has many new changes. This chapter gives you a high-level look
at the overall architectural changes. This will help you dig into the details in the
following chapters with an eye on the big picture.

Examining the New IDE

Whether you are a developer or a manager, you probably care more about how
difficult the transition to this new environment will be than about every new fea-
ture. Microsoft shares your concerns. As you explore what VB.NET can offer, you
will continually observe an intelligent blending of earlier versions of VB with fea-
tures adapted from other languages. Nowhere is this clearer than in the IDE.
Microsoft has added significant new functionality to make developers work more
effectively, without requiring them to learn entirely new ways of doing their jobs.

If you have seen earlier versions of Visual Basic, the IDE for VB.NET will
look very familiar. But if you have also worked with InterDev in the past, even
more of the new interface will be old hat. That is because the new IDE used for
VB.NET has integrated the best ideas from both environments to provide a more
effective way of getting work done.

Of course, nothing comes without a cost. Some of the issues involved with
this upgrade of VB are discussed later in this chapter and in the chapters to come,
and these challenges must certainly be weighed when choosing a development
tool. But first, we take a look at some of the specific new features in the IDE and
the benefits they provide.

Cosmetic Improvements

Although numerous changes have been made to the IDE, the ones you will
probably notice first are the cosmetic changes to existing functionality. Previous
versions of Visual Basic have attempted to strike a balance between conserving
screen real estate and providing one-click access to as much functionality as pos-
sible. Table 1.1 describes some of the ways that these tradeofts have been
addressed in VB.NET.

www.syngress.com

Chapter 1 * New Features in Visual Basic .NET

Table 1.1 Cosmetic Improvements

Feature

Description

Benefit

Multimonitor
support

Tabbed forms

Toolbox

Expandable
code

Help

Developers can use more
than one monitor for display
at the same time.

A tabbed layout is used to
display the child MDI forms
within the development envi-
ronment. The code windows,
Help screens, form layout
windows, and home page all
can be dragged on top of
each other and displayed in
the same pane.

Instead of displaying the con-
trols in a grid, the controls
are presented vertically, with
a description next to each.

Using an interface similar to
Outline mode in Microsoft
Word, you can now break
your code into sections and
conceal or expand each with
a single click.

Instead of having to press F1,
the .NET IDE now observes
what you are doing and pre-
sents context-sensitive help in
its own window.

By executing their code in
one window and debugging
in another, developers can
more accurately simulate the
experiences of the end user.

Though you can’t see as
much information at once,
you have the benefit of
taking up less screen real
estate.

In previous versions of Visual
Basic, you had to hover over
the control to display the
name of the control. (This
was especially frustrating
when you developed your
own custom controls,
because frequently they
would all default to the same
icon.)

Developers now can keep a
higher-level view on their
code, allowing them to
migrate through their appli-
cation more efficiently.

Accurate guidance is now
continuously available to
your developers in real time.

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

Development Accelerators

Of course, not all of the new IDE features are simply cosmetic. The developers of

VB.NET have also provided new interfaces to more efficiently use existing func-
tionality. The features discussed in Table 1.2 all have clear predecessors in VB 6.0,
but they now allow developers to more efficiently generate their applications.

Table 1.2 Development Accelerators

Feature Description Benefit
Menu Editor Using the in-place Menu Previously, you had to choose
Editor, you now can edit the Menu Editor item from
menus directly on the the Tools menu This change
associated form. speeds up development and
reduces errors associated
with using the wrong form.
Solution Unlike the Project Explorer You can now manage com-
Explorer provided in previous versions, ponents that did not origi-

Server Explorer

Home Page

the Solution Explorer pro-
vides a repository to view
and maintain heterogeneous
development resources.

Now you can see the servers
available in a client/server or
Internet app and directly
incorporate their resources
into your code.

The opening screen that
appears when you launch VB
is now created using DHTML.

nate in VB. (The ability to
make VB work better with
other languages is one of the
driving forces behind the
.NET initiative.)

What was formerly done
manually now can be done
using drag-and-drop. For
example, if you have a stored
procedure on a server in SQL,
you can browse directly to
the stored procedure and
make the update on the page
directly.

You can now do more pro-
gramming visually, reducing
potential for error. For
example, if you have a stored
procedure in SQL Server, you
could browse directly to that
stored procedure and drag it
onto the needed pane. VB
does the rest of the coding
automatically.

www.syngress.com

Chapter 1 * New Features in Visual Basic .NET

.NET Framework

The best way to understand what .NET offers is to observe some of the limita-
tions of its predecessors. In this section, we take a very brief and simplified look
at the history of Microsoft component interaction and then a short look at the
architecture.

A Very Brief and Simplified History

When Windows 3.0 was introduced, the initial method used for communicating
across applications was Dynamic Data Exchange, or DDE. DDE was resource-
intensive, inflexible, and prone to cause system crashes. Nonetheless, it worked
acceptably on single machines, and for many years, many applications continued
to use this approach to send messages between applications.

Over the years, Microsoft discouraged the use of DDE, and encouraged the
use of the Common Object Model (COM) and Distributed COM (DCOM).
COM was used for communication among Microsoft applications on a single
machine, whereas DCOM was used to communicate with remote hosts.

Meanwhile, a consortium of allied vendors (including IBM, Sun, and Apple)
were proposing an alternative approach to interhost communication called
CORBA. Unlike COM, CORBA was much better at passing messages across
different operating systems. Unfortunately, the protocol was resource-intensive
and difficult to program, and its use never lived up to its promise.

During this time, Microsoft was improving its technology, and they intro-
duced COM++, Microsoft Transaction Server (MTS), and Distributed Network
Architecture (DNA). These technologies allowed more sophisticated interactions
among components, such as object pooling, events, and transactions.
Unfortunately, these technologies required that each of the applications know a
great deal about the other applications, and so they didn’t work very well when
the operating platforms were heterogeneous (for example, Windows apps com-
municating with Linux).

This brings us to the year 2001 and the .NET initiative, which combines the
power of COM with the flexibility of CORBA. Although this technology is pri-
marily associated with Microsoft, its flexibility and scalability means that theoreti-
cally it could be usable on other platforms in the future. (Although the .NET
Framework runs on all Windows operating systems from Windows 95 on up,
another version called the .NET Compact Framework is intended to run on
Windows CE.)

www.syngress.com

New Features in Visual Basic .NET * Chapter 1

.NET Architecture

The .NET Framework consists of three parts: the Common Language Runtime,
the Framework classes, and ASPNET, which are covered in the following sec-
tions. The components of .NET tend to cause some confusion. Figure 1.1 pro-
vides an illustration of the .NET architecture.

Figure 1.1 .NET Architecture

NET

| |

NET Framework NET Servers
ASPNET
Updated ASP Engine

Web Forms Engine

l

Framework Classes

System.Math, System.lo, System.Data, Etc.

Common Language Runtime

Memory Management

Common Type System

Garbage Collection

ASP.NET

One major headache that Visual Basic developers have had in the past is trying to
reconcile the differences between compiled VB applications and applications built
in the lightweight interpreted subset of VB known as VBScript. Unfortunately,
when Active Server Pages were introduced, the language supported for server-
side scripting was VBScript, not VB. (Technically, other languages could be used
for server side scripting, but VBScript has been the most commonly used.)

Now, with ASPNET, developers have a choice. Files with the ASP extension
are now supported for backwards compatibility, but ASPX files have been intro-
duced as well. ASPX files are compiled when first run, and they use the same

www.syngress.com

Chapter 1 * New Features in Visual Basic .NET

syntax that is used in stand-alone VB.NET applications. Previously, many devel-
opers have gone through the extra step of writing a simple ASP page that simply
executed a compiled method, but now it is possible to run compiled code
directly from an Active Server Page.

Framework Classes

Ironically, one of the reasons that VB.NET is now so much more powerful is
because it does so much less. Up through VB 6.0, the Visual Basic compiler had
to do much more work than a comparable compiler for a language like C++.
This is because much of the functionality that was built into VB was provided in
C++ through external classes. This made it much easier to update and add fea-
tures to the language and to increase compatibility among applications that shared
the same libraries.

Now, in VB.NET, the compiler adopts this model. Many features that were
formerly in Visual Basic directly are now implemented through Framework
classes. For example, if you want to take a square root, instead of using the VB
operator, you use a method in the System.Math class. This approach makes the
language much more lightweight and scalable.

.NET Servers

We mention this here only to distinguish .NET servers from .NET Framework.
These servers support Web communication but are not necessarily themselves
written in the .NET Framework.

Common Language Runtime

CLR provides the interface between your code and the operating system, pro-
viding such features as Memory Management, a Common Type System, and
Garbage Collection. It reflects Microsoft’s eftorts to provide a unified and safe
framework for all Microsoft-generated code, regardless of the language used to
create it. This chapter shows you what CLR ofters and how it works—Chapter 4
covers it in much greater detail.

History

For years, the design of Visual Basic has reflected a compromise between power
and simplicity. In exchange for isolating intermediate developers from the
complexities and dangers of API programming, VB developers accepted certain

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

limitations. The compiled VB code could not interact directly with the Windows
API (usually written in C++), but instead they would interface through a runtime
module that would handle the dirty work of data allocation and dereferencing.

Because of this situation, a gulf developed between VB and C++ program-
mers. In fact, many C++ programmers looked down at VB as merely suitable for
Rapid Application Development and not as an appropriate tool for serious enter-
prise development. They also resented having to write wrappers to allow the VB
developers to access new Windows APIs. This has all changed in VB.NET. Now,
the code created by Visual Basic developers and C++ developers both interface
with Windows in the same way—through the CLR. (For that matter, so do other
new languages, such as C# or JavaScript.NET.)

Convergence

One of the advantages of VB.NET is that it is now possible to use VB to develop
applications that previously needed to be developed in lower-level languages,
without losing the traditional advantages of VB development. Whether you are a
developer or a manager, your job involves analyzing the tradeoffs of the various
tools available to better illustrate the convergence of these two platforms, Table 1.3
compares the ways in which VB and C handle four critical issues, both historically
and in the .NET environment.

Table 1.3 VB and C Comparison

VB 1.0-4.0 VB 5.0-6.0 VB.NET C++ C#

Runtime Yes Yes No No No
Required?

Interface CcOM COM CLR CcOM CLR
Model

Memory Few Few Very few Many Very few
Leaks?

Inheritance Yes No No Yes Yes
Supported?

Runtime Required? Starting with VB 5.0, Microsoft made the claim
that Visual Basic could actually compile to a true executable, but it is
probably more accurate to say that the runtime module was just smaller

www.syngress.com

10

Chapter 1 * New Features in Visual Basic .NET

and more transparent to the user. By contrast, C++ has never required a
runtime module.

Interface Model With the CLR, the code compiled is no longer the
exact code executed, but rather it is translated on the client machine.
(Some of the advantages of this approach are described in more detail in
the New Compiler section.) In previous versions of VB and C++, the
code was compiled to use COM, but in VB.NET and C#, the code 1s
compiled to CLR.

Memory Leaks? One of the traditional advantages of VB is that
memory was managed responsibly by the compiled executable, and this
advantage remains in VB.NET, although the work is now done in the
CLR. (By contrast, poorly written C++ code often created these errors
because memory was not deallocated after it was used.)

Inheritance Supported? This is probably the most important advance
in VB.NET, and it is covered in the next section. (Starting with Version
5.0,VB supported a rough simulation of inheritance that is also
described in the next section.)

Object-Oriented Language

Possibly the most valuable addition in VB.NET is true object orientation.
Although approximations of object orientation have been available in earlier ver-
sions of Visual Basic, only in VB.NET do developers gain the advantages of true
code inheritance, which allows business logic to be more easily and reliably prop-
agated through an organization. In this section, we briefly introduce some princi-
ples of object-oriented design and describe the benefits it can provide to VB
developers.

Object-Oriented Concepts

One could write an entire book on Object-oriented design (and indeed, many
people have) but we will provide an introduction here. The primary advantage of
object-oriented (OO) languages compared to their procedural predecessors is that
not only can you encapsulate data into structures; you can also encapsulate
behavior as well. In other words, a car not only describes a collection of bolts,
sheet metal, and tires (properties), but it also describes an object that can speed up
and slow down (methods).

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

OO design frequently requires more up-front work than other environments,
and usually the design process starts by enumerating a list of declarative sentences
that describe what an object must do. For example, if you were building a car
using object-oriented principles, you might describe the requirements as follows:

= The CAR must ACCELERATE.
= The CAR is a type of VEHICLE.
= The CAR has the color RED.

Now we know enough to begin defining the objects we need. In general, the
nouns in these sentences describe the objects that are required (in this case, the
car); the verbs describe the methods that the object must perform, and the adjec-
tives describe the properties contained within the object. Then, after each of these

are defined, the code can be developed to support these requirements. This
breakdown is summarized in Table 1.4.

Table 1.4 Object-Oriented Terms

High-Level Concept Part of Speech Example
Objects Nouns Car
Methods Verbs Accelerate
Properties Adjectives Color=Red

Advantages of Object-Oriented Design

The true advantages to object-oriented design come when you can propagate
behavior from one object to another. For example, if you were developing a
sedan and a coupe, you might design few difterences between the two cars other
than the number of doors (four versus two).

This is where inheritance comes in. If you already had a sedan designed, you
could build a coupe just by inheriting all of the behavior of the sedan, except for
overriding the number of doors. Observe the following VB pseudocode:

Public O ass Coupe
I nherits Sedan
Overrides Sub Buil dDoors()
Doors = Doors + 2
End Sub
End d ass

www.syngress.com

1

12

Chapter 1 * New Features in Visual Basic .NET

Now, if you add new features to the sedan (such as side air bags, for example),
they are automatically propagated to the coupe without adding any additional
code.

By contrast, overloading is when you want the methods of a single object to
have difterent behaviors depending upon what parameters you pass to it. Then,
VB is smart enough to determine which module to run depending upon the

parameter list. The differences between overriding and overloading are summa-
rized in Table 1.5.

Table 1.5 Overriding versus Overloading

Type Overriding Overloading

Method Name Same Same

Argument List Same Different

Behavior Replaces existing method Supplements existing method

By combining the new overloading and overriding capabilities of VB.NET,
you can create applications that are much more stable and scalable.

Developing & Deploying...

Taking Care with Inheritance

There is a famous story about the Australian army that illustrates the risks
involved with careless OO design. They were developing an object-ori-
ented combat training simulation. First, they created a soldier object that
could move and shoot. The programmers then wanted a kangaroo
object. Because so much of the behavior was the same, they decided to
save some time and inherit the soldier as the parent class and added the
ability to hop. Unfortunately, because they didn’t override the attack
method, the next time the virtual soldiers encountered the virtual kanga-
roos, the kangaroos shot back at them!

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

History of Object Orientation and VB

Visual Basic has been best described as an object-based language, rather than an
object-oriented one, because it did not support true inheritance from one object to
another. Programmers have used different methods to simulate Inheritance since
VB 5.0, specifically by using the Implements interface. Although this feature didn’t
actually bring functionality of a parent class, at least it defined a set of methods
that would need to be coded. However, there was not an effective way to reuse
business logic. This was a clumsy workaround, at best, and is far inferior to the
overriding and overloading that are now available.

Namespaces

One final new topic that addresses OO design is that of namespaces, which are
used in the .NET architecture to keep application resources separated to reduce
global conflicts. One of the major design decisions of .NET was to try to reduce
the risk of harmful program interaction, while still allowing applications that
were intended to work together to share their resources effectively. To achieve
this, Microsoft introduced namespaces. Now, when you declare a resource, you
also must declare the namespace where that resource will reside. Although the
resources will traditionally reside in a local namespace local to the user, it is pos-
sible to override that. Of course, you may occasionally need to expose code in
common repositories. Although .NET supports this approach, you now need to
digitally sign and authorize your code to achieve this. Because of the extra hassles
involved, this approach will likely be less used in the future.

Web Applications

In general, a Web application is an application that uses resources that are dis-
tributed on the client’s machine and on one or many Web servers, which may in
turn require resources from other servers. This chapter first describes the different
ways this has been done in the past and then focuses upon the new resources
available to the VB.NET developer.

Web Applications Overview

In the past, four primary approaches were used to develop Microsoft Internet
applications:

www.syngress.com

13

14

Chapter 1 * New Features in Visual Basic .NET

= ActiveX documents You could compile your applications to a VPD,
which allowed a nonmodal VB application with an interface that resem-
bled a traditional VB app to be displayed directly in the Internet
Explorer interface. Unfortunately, this is not directly supported in
VB.NET, so you will probably want to maintain legacy applications
using this architecture in VB 6.0.

= DHTML applications You could create applications that deployed
content to a browser using extensions to HTML that allowed significant
data entry and validation to be performed on the client without
requiring a round-trip to the server. This approach would require appli-
cations that were much smaller and easier to deploy than those created
using ActiveX documents. Unfortunately, this approach is not directly
supported in VB.NET, so you will probably want to maintain legacy
applications using this architecture in VB 6.0.

= ASP applications You could create applications that executed pri-
marily on the server, dynamically generating the HTML required to
render the interface for the application. Although this approach has been
very popular, it can lead to code that can be difficult to maintain.

= WebClasses Finally, you could create applications visually that Visual
Basic would translate into Internet applications. Although the implemen-
tation of WebClasses in VB 6.0 was very limited, WebClasses have
evolved into Web forms, which are the preferred approach for devel-
oping and deploying Internet applications in VB.NET.

Web Forms

The 1dea behind ASP applications is that each page is generated dynamically for
the user. Because this work 1s performed on the server, this approach has the
huge advantage of being relatively browser- and version-independent—all that
the browser has to do is display a static page, and the server does the rest of the
work. However, when used by inexperienced engineers, this approach can be dif-
ficult to maintain, debug, deploy, and update. Although Web forms may not seem
impressive compared to normal VB forms, they compare very favorably to a tradi-
tional ASP application.

By contrast, VB.NET supports the use of Web forms, which look similar to
ASP pages but have four primary advantages:

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

= Unlike ASP pages, which are interpreted when they are executed, Web
forms are compiled when they are first used, so the performance can be
much better.

» Unlike ASP pages, which didn’t natively support VB, the full language is
now available directly from this environment.

» Building and maintaining the layout of the Web forms is much easier
using the built-in VB designers than it was to code them by hand in
ASP. (Although ASP has had visual layout tools since InterDev 6.0, these

were awkward and rarely used in professional environments.)

= Separating the presentation layer and business layer of the application is
much easier, which makes it easier to leverage specialized development
resources instead of requiring that all of your developers be skilled in
page design.

Web Services

One of the greatest challenges in designing Web applications that communicate
with each other is trying to define and determine the required application inter-
faces. Unless you had a pre-existing strategic relationship with the applications
that you were leveraging, you might be unable to integrate your applications, or
you might be forced to integrate them in a very inefticient way. For example,
some applications can interact only by having one application pretend to be a user
with a Web browser, navigating among the screens of the target application and
screen-scraping the needed information oft of the display. The disadvantages of
this approach are numerous: You waste server resources by displaying more data
than is needed to perform the transfer, and you run the risk of your application
breaking whenever the screen layout would change.

This is where Web Services come in. Now, writing server applications that are
capable of exposing functionality to non-Microsoft applications is much easier.
Features include the following:

= Direct support of industry standard XML for passing information
= Greater platform independence than can be provided through MTS
= Use of HTML to get through firewalls (but note the following warning)

www.syngress.com

15

16

Chapter 1 * New Features in Visual Basic .NET

\WARNING

Firewalls are explicitly created by network administrators to restrict
access on certain ports. You can bypass this by routing your data
through HTTP port 80. However, when using this approach, make sure
that you consider the security priorities not only of your own organiza-
tion, but also of the organization you are interfacing with.

Of course, to consume these Web services you need to use the new discovery
capability of Web services. This allows an external application to know what
methods are available, and what parameters are required to drive them. This is
performed by using the protocols HTTP and SOAP. These protocols are
described in the following sections.

HyperText Transport Protocol

The Hyperlext Tiansfer Protocol (HTTP) is the backbone of the Internet. It is most
frequently used to transmit Web pages from one computer to another, but it also
can be used to transmit other kinds of information.

When you type a URL into a browser, you specify the protocol you
use to download the content to your local browser (for example, in
http://www.microsoft.com, the protocol is http). This protocol is designed
to emphasize reliability over speed, because for Web applications it is more
important to wait a little longer to get everything right the first time.

A disadvantage of HTTP is that a separate connection must be created for
every resource that is downloaded. It also is not as fast as other protocols (such as
FTP) because of this increased overhead. However, more recently, newer versions
of Internet servers have done a better job of caching and connection pooling to
reduce these disadvantages.

In the .NET architecture, the HTTP protocol is used in conjunction with
the SOAP protocol to transmit information and instructions from one Web server
to another. The following section describes the SOAP protocol in more detail.

NoTE

Don’t confuse HTTP with HTML, which stands for HyperText Markup
Language. That is the protocol that defines how Web pages are laid out
visually, not how they are transferred from one computer to another.

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

Simple Object Access Protocol

The Simple Object Access Protocol (SOAP) 1s not nearly as widely used as HTTP,
but it 1s expected to have a large impact in the future. SOAP is a protocol that
works on top of HTTP to communicate between servers. Although HTTP
simply 1is used to pass strings of data, SOAP i1s a way of organizing those strings to
represent messages that can be easily parsed and understood either by a computer
or by a human analyst. Instead of passing messages in proprietary protocols, it
simply sends strings in XML in human-readable form. For example, observe the
following excerpt from a simple SOAP message:

<SQOAP: Body>
<MyVal ue>12345</ MyVal ue>
<SCAP: Body>

Although HTTP is used to make sure that all the letters and numbers get
from point A to point B, the SOAP protocol inserts the hierarchical tags that
ascribe meaning to the content.

Other protocols allow servers to communicate with each other. For example,
DCOM is used in the Microsoft world, and RMI provides roughly the equivalent
functionality for Java applications. However, these protocols work poorly when
they span different operating systems.

Of course, this approach has its downsides. SOAP messages will never be as
small as those sent using proprietary technologies. For example, in the earlier
message, the number 12345 would take either 5 or 10 bytes, (depending on
whether or not you were using the international Unicode standard), plus the
bytes required to send the XML tags themselves. By contrast, that information
could be transmitted in 2 bytes if it was stored as an integer.

Also, the use of SOAP doesn’t eliminate the need to have a clear under-
standing of the contents of the message received. It simply pushes the responsi-
bility for interpretation from the operating system to the programmer.

Security

As applications are extended to the Internet, new risks are extended to the orga-
nizations that deploy these applications. The security models for existing client/
server applications have been based upon several assumptions. Unfortunately, as
the boundaries between client/server, Internet, intranet, and distributed applica-
tions have become blurred, some of these assumptions have been challenged. It is
no longer safe to focus security efforts upon servers, because the lines between

www.syngress.com

17

18

Chapter 1 * New Features in Visual Basic .NET

servers and clients have been blurred. It is no longer safe to assume that the
effects of an application can be analyzed on a single computer, because more
applications now run on and require the resources of multiple machines. And if
you are deploying your application to the general public, it is no longer safe to
assume you can identify all of the users of your application. Because of this,
Microsoft has now introduced a new security tool in .NET to support the devel-
oper: SECUTIL. This tool makes it easier to extract information about the user
identity, after the user has been validated using the Public Key Value (internal
users) or the X.509 certificate (external users).

Because of this, users are accountable for their code. In the past, a developer
could write their own version of an OCX or DLL, copy it into a Windows
system directory and register it, and this would have an impact upon every other
application that was dependent upon that resource.

Although this was a handy way to quickly deploy patches, it also infuriated
developers whose code failed when used with the new DLL due to dependence
upon behavior that was altered in the new versions of the code. By contrast, by
using SECUTIL, it is possible to identify what code was developed by what
developer, which increases accountability.

Type Safety

Although much of VB.NET allows you to eliminate development steps, a few
cases exist where you need to take extra precautions in this new environment,
and type safety is one of those factors. Type safety is the enforcement of variable
compatibility when moving data from one variable to another. In this section, we
examine the new requirements in VB.NET and the approaches to address this
requirement.

Casting

If you have experience with languages such as C++ or Java, then you are prob-
ably experienced with casting. If you are an experienced VB developer, then you
probably have used casting, but the term may be new to you.

Casting 1s the process of explicitly converting a variable of one type to a vari-
able of another type, and it is used to reduce bugs caused by moving information
into variables using inappropriate data types. For example, observe the following
code:

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

Dim A as integer
Dim B as |ong

A = 20000

B CLng(A)

The variable B has been explicitly cast to a Long type, using the CLng func-
tion. A cast function exists for each type of variable. Some examples of this are
provided in Table 1.6. Casting is not new in VB.NET, but it is more important,
for reasons discussed in the next section.

Table 1.6 Cast Functions for Variable Types

Cast Function Action

ClLng Convert to a “Long”
CStr Convert to a “String”
Cint Convert to a “Integer”
CDbl Convert to a “Double”

Data Conversion

When you convert from one variable type to another, it is called narrowing it
there is a risk of loss of precision, and widening if there is no risk of this loss.

In other languages like C++, the developer explicitly tells the compiler what
to do when you pour data from one variable into another with a risk of data loss.
The reason is to provide informed consent—to make sure that you are aware of
the risk and accept responsibility for the consequences if the data is too large for
the defined container.

Now, in the current version of VB.NET, Microsoft has introduced Option
Strict. If you use this option, you must perform an explicit cast for every nar-
rowing assignment. For example, with Option Strict off, the following line would
successfully compile:

Dim a as integer
Dmb as |ong
A = 20000

B =a' Cnt excluded

But with Option Strict on, this code would generate a compilation error.

www.syngress.com

19

20

Chapter 1 * New Features in Visual Basic .NET

Bitwise Operations

VB.NET enforces more precise type usage in other ways as well, and some short-
cuts that were used by previous generations of VB programmers are no longer
permitted.

In VB.NET, when writing conditional code, the parameter used for the IF
statement must be of the type Boolean. In previous versions of VB, programmers
could take a shortcut, and implicitly cast the integer O to the Boolean False. For
example, the following line of code would work in VB 6.0:

Dim a as integer
A=0
If (a) then MsgBox "Hello world"

This code would, however, fail in VB.NET. To correct the code, you have to
make the following change in the third line:

Dim a as integer
A=20
If (CBool (a)) then MsgBox "Hello world"

Note that this situation is similar to the relationship between C++ and Java.
Java supports only Booleans with IF, whereas C++ allowed implicit casting of
other variable types.

New Compiler

Although you will normally use the compiler from within the IDE, you also have
new flexibility in compiling from the command line with VB.NET. In this sec-
tion, we take a look at how you can use the compiler, and then we take a look at
some of the advantages to the executables created by the new compiler.

Compiling an Executable

You can initiate compilation from the command line, invoking the executable
wsc.exe, with the parameters shown in Table 1.7.

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

Table 1.7 Parameters for WSC Compiler

Tag Meaning

/t The type of output code. For example an EXE means a
console application, while WINEXE means that it is a
Windows application.

/r References to include (all DLLs that are referenced in
the app).
/version The version number visible when the properties of the

executable are viewed (major version, minor version,
revision, and build).

The last parameter The VB file to compile.

Architecture

To understand the operation of the new VB compiler, you need to understand
the architecture for the applications that the VB compiler creates.

Previously, the executable created by a language such as C++ would make
direct references to registers, interrupts, and memory locations. Although working
inside the Microsoft foundation classes could reduce the risk of error, eliminating
risk due to inexperience (or malice) was not possible.

That has changed with VB.NET. Now, instead of compiling directly to hard-
ware-specific machine code, the compilation is performed to MSIL (Microsoft
Intermediate Language). The syntax of MSIL is similar to machine code, but any
EXE or DLL containing MSIL will need to be reinterpreted after it is deployed
to the destination machine.

File Management in Previous Versions of VB

In previous versions of VB, each resource that you included in your project would
have its own extension and reside in its own file, with an extension that identified
the type of resource, as shown in Table 1.8.

Table 1.8 Sample File Extensions in VB 6.0

Resource Type Extension
Form frm

Class Module .cls
Module .bas

www.syngress.com

21

22

Chapter 1 * New Features in Visual Basic .NET

Although this made it easy to interpret the resource type immediately, it also
made it very difficult to manage projects with large numbers of small classes.
Another challenge was trying to keep filenames reconciled with class names. This
became especially difficult as projects grew and changed in focus.

File Management

In VB.NET, the filename extension restriction has been removed. Now,

regardless of which type of resource you create, it will have the same extension
(see Table 1.9).

Table 1.9 Some of the File Extensions in VB.NET

Resource Type Extension
Form .vb
Class Module .vb
Module .vb

You can also concatenate as many resources as you want into a single file,
regardless of type. The default behavior (when using the Project | Add Class
menu option) is still to create new files, but you can copy this content into a
single source file. For example, two distinct classes could be represented in the file
MyClasses.vb with the following code:

Public O ass Beeper
Publi ¢ Sub Beep()
MsgBox (" Beep")

End Sub
End O ass

Public O ass Booper
Publ i ¢ Sub Boop()
MsgBox (" Boop")
End Sub
End C ass

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1 23

Changes from Visual Basic 6.0

The following sections detail some options you have to prepare for VB.NET.
First, we look at features in VB 6.0 that are gone in VB.NET. Then we look at
new features in VB.NET. Finally, we observe features that are present in both ver-
sions but with some significant changes. This section doesn’t cover every change,
but it will provide enough context to illustrate the challenges and opportunities
involved with this transition.

Variants

The Variant data type is no longer supported in VB.NET, and it has been merged
into the Object type. More specifically, because all variables are now objects, a
variant is simply defined as an object.

Variable Lower Bounds

To make the language compatible with the other .NET languages, you no longer
can start an array at 1 using the Option Base command. All arrays are now
forced to begin with array element zero.

Fixed Length Strings

You now cannot create strings of fixed length. In previous versions of VB, you
could write the following code to define the string to be exactly 12 characters
long:

Di m sLast Name as String * 12

This is no longer supported in VB.NET to ensure compatibility with the
other .NET languages.

NULL Propagation

In previous versions of Visual Basic, any expression that had a NULL in it would
yield a null. For example, 1 + NULL would yield a NULL in VB 6.0. However,
VB.NET does not support NULL propagation. If you are using it to do error
handling, you should rewrite your code and use the IsNull function.

www.syngress.com

24

Chapter 1 * New Features in Visual Basic .NET

NoTE

Interestingly, this approach to null propagation is not standard for all
Microsoft applications. One major difference between SQL Server 6.5 and
7.0 is that null propagation has been introduced into 7.0 unless you
explicitly disable it. In other words, A + NULL + B would equal AB in SQL
Server 6.5, but NULL in version 7.0. This was done to comply with the

ANSI SQL standard.

Other Items Removed

In addition to those already mentioned, the following features shown in Table 1.10

are no longer supported in VB.NET.

Table 1.10 Language Substitution Strategies

Statement Old Operation

Approach to Replace

GoSub Allowed execution of a section
of code without leaving the
existing function or procedure.

Computed GoTo/ Acted like the Switch

GoSub statement, but selecting one of
many sections of code to
execute.

Defint, DefLong, Defined a range of scalar

DefStr, and so on variables of the type specified
with a certain range.

Lset Reassign variables of
user-defined types.

Replace with new
modules.

Use Select Case or
Switch with custom
functions.

Define each of the
variables explicitly or
rewrite code to
support an array.

Copy over components
of new types
individually.

Function Values

You now can return a value from a function using the command Return,
instead of needing to assign the value to the name of the function. Not only does

this make it easier to terminate the function (instead of having to use two lines to

set the value and then Exit Function, these two statements can be rolled up into

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

a single command), it also means that you can rename the function without
having to change all the references to the function name.

Short Circuits

In many other languages, as soon as an IF statement resolves to False, the other
parts of code do not execute. For example, observe the following piece of code:

I f DebitsCorrect("Chase") and CreditsCorrect ("G tibank") then
MsgBox "Transaction processed"
End if

In VB6, both the function DebitsCorrect and the function CreditsCorrect
would always execute. However, in one of the new features proposed for
VB.NET, if DebitsCorrect resolved to False, then CreditsCorrect would never
execute. This behavior is called short circuiting because the code knows that the
expression can never resolve to True if the first half resolves to False; it doesn’t
have to bother to execute the second half of the expression. Unfortunately, this
causes greater incompatibility with legacy code, which is why Microsoft has not
confirmed whether or not they will include this change in the final release of
VB.NET.

Properties and Variables

Of course, many of the day-to-day changes you will notice are evolutionary, not
revolutionary. In this section, we look at the impact of changes in how properties
and variables are stored and manipulated.

Variable Lengths

Unfortunately, in the history of computer science there has been disagreement
over the definition of a byte, which has led to significant confusion for the
modern developer. Many early computers used eight bits (binary digits) to
describe the smallest unit of storage, but when computers became more powerful
and stored data internally in larger structures, some developers still thought that a
byte was eight bits, whereas other developers thought that a byte should still rep-
resent how the processor stored data, even if it used 16 bits, or more. Because of
this situation, the size of the variables in C could change when code was recom-
piled on other hardware platforms, and other languages that came in the future
reflected these incompatibilities. Now, in .INET, the definitions of the variable
types have been standardized, as shown in Table 1.11.

www.syngress.com

25

26

Chapter 1 * New Features in Visual Basic .NET

Table 1.11 Variable Lengths in Bits

Bit Length VB 6.0 VB.NET
8 bits Short Byte

16 bits Integer Short
32 bits Long Integer
64 bits N/A Long

These definitions bring the standards in line with those used in the rest of the
NET suite of application development tools. Although some of these variable
names will be automatically substituted when a VB 6.0 application is imported
into VB.NET, you should still examine the finished code to make sure that the
new code reflects your application needs. (Also be aware that this will also aftect
the changes made in the API calls—if it used to be a Long, it should now be an
Integer, and so on.)

Get and Set

Previously, your Get and Let/Set statements had to be coded separately, as two
separate blocks of code residing in a class. Of course, it was possible to have a Get
without a Let/Set for read-only properties (or vice versa, for write-only proper-
ties), but for most properties, this added unnecessarily clumsiness to the organiza-
tion of the class modules. Now, in VB.NET, these are now grouped together in a
single module that is broken down into two sections that support both assigning
and retrieving these values.

Date Type

In earlier versions of Visual Basic, variables of the Date type were stored internally
as Doubles (with the number of days to the left of the decimal point and the
fraction of a day stored to the right). Therefore, many developers chose to store
their dates as Doubles instead of as Dates, even after VB introduced the Date

type.

This approach had many advantages. (For example, when using heterogeneous
databases, it was often more reliable to store data as numbers, and the math was
often much easier as well if you reserved the use of Dates for presentation only.)
However, in VB.NET, Double and Date are no longer equivalent, so you should
use the Date type for date use in VB.NET, or you may get compilation errors.
Although Dates are now represented internally using the .NET DateTime

www.syngress.com

New Features in Visual Basic .NET ¢ Chapter 1

format, which supports a greater precision and range of dates, you can still use
the ToOADate VB.NET function to convert this type back into a Double-
compatible format.

Default Properties

Some Visual Basic developers use a shortcut to omit the reference to the default
property of an object. For example, if you wanted to assign a value to a text box,
instead of writing this:

t bFi rst Nane. text = "John"

You could instead write this:

t bFi rst Name = "John"

Each control had a default property that would be referenced if you omitted
the name of the property, and when you created your own objects you could
define the default property you wanted to use for it.

However, in VB.NET, because all data types are now represented as objects, a
reference to an object that omits any property can be interpreted as the object
itself instead of a default property of an object. Therefore, when developing
applications in VB.NET, remember to explicitly declare the default properties.

www.syngress.com

27

28

o

WWW.syngress.com

Chapter 1 * New Features in Visual Basic .NET

Summary

VB.NET introduces many exciting new features to the VB developer, though
these enhancements do cause some minor compatibility issues with legacy code.
The new Integrated Development Environment (IDE) incorporates some of the
best ideas of VB 6.0 and InterDev to make it easier and more intuitive to quickly
create applications using a wider variety of development resources. The code
developed in the IDE can then be compiled to work with the new .NET
Framework, which is Microsoft’s new technology designed to better leverage
internal and external Internet resources. The compiler writes the code to
Common Language Runtime (CLR), making it easier to interact with other
applications not written in VB.NET. It is now possible to use true inheritance
with VB, which means that a developer can more efficiently leverage code and
reduce application maintenance. Not only is the CLR used for stand-alone VB
applications, it is also used for Web Applications, which makes it easier to exploit
the full feature set of VB from a scripted Web application. Another way in which
security is enhanced is through enforcement of data type compatibility, which
reduces the number of crashes due to poorly designed code. Exploiting the new
teatures of VB.NET is not a trivial task, and many syntax changes were intro-
duced that will cause incompatibilities with legacy code. But, many of these are
identified, emphasized, and in some cases automatically updated by the IDE
when a VB 6.0 project is imported into VB.NET.

Solutions Fast Track

Examining the New IDE

M The improvements in the new IDE can be broken down into two cate-
gories: those that conserve development time and those that conserve
screen real estate.

M Among the cosmetic improvements in the new IDE are multimonitor
support, tabbed forms, a better layout for the toolbox, expandable code,
and live interactive help.

M Among the development improvements in the new IDE are an inte-
grated menu editor, an enhanced solution explorer, a server explorer that
permits the developer to directly access resources on remote hosts, and a

dynamically configurable IDE home page.

New Features in Visual Basic .NET * Chapter 1 29

NET Framework

M The .NET Framework is made up of three parts: the Common
Language Runtime, the Framework classes, and ASPNET.

M The Common Language Runtime provides the interface between your
code and the operating system.

M The Framework classes ofload much of the work done by the VB into
language-independent development libraries. : ‘

M ASPNET provides direct access to the full VB language from a scripting | ™

platform. |I |

Common Language Runtime

M In .NET, the compiler no longer reduces the source code into a file that
can be directly executed.

M Instead, the code is compiled into CLR, a Common Language Runtime
that has an identical syntax regardless of the .NET compiler used to
generate it.

M By executing CLR instead of compiled code, the operating system can
reduce the number of system crashes caused by the execution of erro-
neous or malicious code, while also increasing opportunities for cross-
platform compatibility.

Object-Oriented Language

M Previous versions of Visual Basic did not offer true object-oriented
inheritance of code from a parent class to a child class.

M InVB.NET, propagating code from one module to another is now pos-
sible, while only overriding the behavior that needs changed in the child
class, thus improving maintainability.

M Because of the CLR, not only can a VB developer inherit a class from

another VB module, he can also inherit from a module developed in
another language, such as C#.

30 Chapter 1 * New Features in Visual Basic .NET

Web Applications

4]
4]

4]

4]

L
=

4]

Web applications are the successor of Web forms in VB 6.0.

Using Web applications allows a developer to separate the presentation
layer of an application from the business layer and data layer.

Web applications can be more efficient than traditional ASP applications,
because the ASPX pages are compiled when they are first run.

Security

Microsoft has now introduced a new security tool in .NET to support
the developer: SECUTIL. This tool makes it easier to extract informa-
tion about the user identity, after the user has been validated using the
Public Key Value (internal users) or the X.509 certificate (external users).

By using SECUTIL, it is possible to identify what code was developed
by what developer, which increases accountability.

Type Safety

To reduce the security and application risks associated with careless vari-
able assignment, VB.NET is more restrictive than VB 6.0 when copying
data from one variable to another.

If you assign a variable residing in one variable to another, and the
second variable cannot store numbers as large as the first variable, it is
now necessary to explicitly cast the variable to the new type. (InVB 6.0,
in most cases the conversion happens automatically.)

New Compiler

o}

WWW.syngress.com

The Compiler in VB.NET compiles the code not into code that can be
directly executed by the OS or by a runtime module, but rather to CLR
syntax.

The code generated by the new compiler 1s more reliable (many errors
are screened out at runtime), more secure (security holes have been
closed), and more interoperable (new CLRs could potentially be
generated for other platforms in the future).

New Features in Visual Basic .NET * Chapter 1 31

Changes from Visual Basic 6.0

M Although there are substantial syntax changes between VB 6.0 and
VB.NET, in most cases clear substitutes are available to the developer to
accomplish the same thing.

M Many of these substitutes are automatically substituted when aVB 6.0
project is imported into VB.NET. However, you should still inspect and
heavily test your application after any such conversion. ,‘

Frequently Asked Questions ‘

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: If we’re deploying other .NET applications across our organization, do I need
to update my applications builtin VB 6.0?

A: No. Traditional COM based applications will continue to be supported for at
least the next several years,.and CLR applications will interface cleanly with
legacy code. However, if you want to start gaining some of the advantages of
CLR, you may consider-writing a wrapper application in VB.NET that is
used as the new interface to your application. Remember that (unlike some
other Microsoft products) you can have VB 6.0 and VB.NET on your com-
puter at the same time and use them to support-different families of products.

Q: When should I use ASPNET, and when should I use MTS?

A: If you need to support distributed transactions, you may want to stick with
MTS because ASPNET will not support that feature in its initial release.
Conversely, if you need to use XML to pass data, it may be easier to do this
with ASPNET than with MTS (though, of course, you could write your
own tools in MTS to accomplish the same thing). Over time, ASPNET will
probably replace most of the need for MTS.

WWW.syngress.com

32 Chapter 1 * New Features in Visual Basic .NET

Q: I am creating a project that will have 40 classes. Should I put all of these
classes into their own file or into one big file?

A: This may depend upon how your work team is organized. If you have a small
project team, you may want to aggregate many of your resources together
into a single file. However, if you have a large, decentralized team, you may
want to keep the old style of separating the classes into many different files,
because this would work better with traditional version control software. Just
because Microsoft has added a feature doesn’t mean you have to use it.

Q: On my project team, we've set up inheritance, but we’re having some prob-
lems. My team is inheriting objects created by another team, but whenever
the other team changes the behavior of their objects, our code breaks. What
can we do?

A:You can organize your object model in many different ways, but one popular
approach is to use abstract classes. These classes are not directly instantiated,
but they are intended to serve only parents of other classes. Instead of inher-

iting directly from the objects created by the other team, you may want to
work with them to define a subset of functionality that won’t change, put
ﬁl—;- that in an abstract class, and then both inherit instead from that shared object.

WWW.syngress.com

Chapter 2

The Microsoft .NET

Framework

Solutions in this chapter:

= What Is the .NET Framework?

= Introduction to the Common
Language Runtime

» Using .NET-Compliant
Programming Languages

= Creating Assemblies

= Understanding Metadata

= Using System Services

= Microsoft Intermediate Language

» Using the Namespace System to
Organize Classes

» The Common Type System

= Relying on Automatic Resource
Management

= Security Services

M Summary

M Solutions Fast Track

M Frequently Asked Questions

33

34

Chapter 2 « The Microsoft .NET Framework

Introduction

Chapter 1 provided an overview of Visual Basic .NET applications; let’s now look
more closely at the various components of the .NET Framework.The .NET
Framework includes a number of base classes, which you will use to begin. The
Framework includes abstract base classes to inherit from as well as implementa-
tions of these classes to use.You can even derive your own classes for custom
modifications. All the classes are derived from the system object. As you can
imagine, this gives you great power and flexibility. Some of this power was previ-
ously available in Visual C++, but now you can have this same power within
Visual Basic. All applications will share a common runtime environment called
the Common Language Runtime (CLR).The .NET Framework now includes a
common type system. This system allows all the languages to share data using the
same types. These features facilitate cross-language interoperability.

To use .NET, you are required to learn some new concepts, which we discuss
throughout this chapter. A Visual Basic .NET application is wrapped up in an
assembly. An assembly includes all the information you need about your applica-
tion. It includes information that you would find currently in a type library as
well as information you need to use the application or component. This makes
your application or component completely self-describing. When you compile
your application, it is compiled to an intermediate language called the Microsoft
Intermediate Language (MSIL). When a program is executed, it is then converted
to machine code by CLR’s just-in-time (JIT) compiler. The MSIL allows an
application to run on any platform that supports the Common Language
Runtime without changing your development code.

Once the code has been prepared, .NET’ work is still not done. .NET con-
tinues to monitor the application and performs automatic resource management on
the application to clear up any unused memory resources and provide security
measures to prevent anyone from accessing your assembly.

In these few paragraphs, we’ve introduced the major new concepts found
within .NET: the CLR, the assembly unit (and its contents), what makes .NET
interoperable, and how .NET is “smart” in terms of automatic memory manage-
ment and security.

What Is the .NET Framework?

The .NET Framework is Microsoft’s latest offering in the world of cross-
development (developing both desktop and Web-usable applications),

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

interoperability, and, soon, cross-platform development. As you go through this
chapter, you’ll see just how .NET meets these developmental requirements.
However, Microsoft’s developers did not stop there; they wanted to completely
revamp the way we program.

In addition to the more technical changes, .INET strives to be as simple as
possible. .NET contains functionality that a developer can easily access. This same
functionality operates within the confines of standardized data types and naming
conventions. This internal functionality also encompasses the creation of special
data within an assembly file that is vital for interoperability, NET’s built-in secu-
rity, and .NET’s automatic resource management.

Another part of the “keep it simple” philosophy is that .NET applications are
geared to be copy-only installations; in other words, the need for a special instal-
lation package for your application is no longer a requirement. The majority of
NET applications work if you simply copy them into a directory. This feature
substantially eases the burden on the programmer.

The CLR changes the way that programs are written, because VB developers
won’t be limited to the Windows platform. Just as with ISO C/C++,VB pro-
grammers are now capable of seeing their programs run on any platform with
the .NET runtime installed. Furthermore, if you delegate a C programmer to
oversee future developments on your VB.NET program, the normal learning
curve for this programmer will be dramatically reduced by .NET’s multilanguage
capabilities.

NoTE

Visualization is still key! Die-hard VB programmers may find themselves
having a hard time visualizing all the new concepts in VB.NET (and we all
know that proper logic visualization plays a big role in what we do).
Something that may help is to think about VB.NET as a completely flex-
ible language that can accommodate Web, console, and desktop use.

Introduction to the Common

Language Runtime

CLR controls the .NET code execution. CLR is the step above COM, MTS,
and COM+ and will, in due time, replace them as the Visual Basic runtime layer.

www.syngress.com

35

36

Chapter 2 « The Microsoft .NET Framework

To developers, this means that our VB.NET code will execute on par with other
languages, while maintaining the same, small file size.

The CLR is the runtime environment for .NET. It manages code execution
as well as the services that .NET provides. The CLR “knows” what to do through
special data (referred to as metadata) that is contained within the applications. The
special data within the applications store a map of where to find classes, when to
load classes, and when to set up runtime context boundaries, generate native
code, enforce security, determine which classes use which methods, and load
classes when needed. Since the CLR is privy to this information, it can also
determine when an object is used and when it is released. This is known as
managed code.

Managed code allows us to create fully CLR-compliant code. Code that’s
compiled with COM and Win32API declarations is called unmanaged code, which
is what you got with previous versions of Visual Basic. Managed code keeps us
from depending on obstinate dynamic link library (DLL) files (discussed in the
Ending DLL Hell section later in this chapter). In fact, thanks to the CLR, we
don’t have to deal with the registry, graphical user identifications (GUIDs),
AddRef, HRESULTS, and all the macros and application programming interfaces
(APIs) we depended on in the past. They aren’t even available options in .NET.

Removing all the excess also provides a more consistent programming model.
Since the CLR encapsulates all the functions that we had with unmanaged code,
we won't have to depend on any pre-existing DLL files residing on the hard
drive. This does not mean that we have seen the last of DLLs; it simply means
that the .NET Framework contains a system within it that can map out the
location of all the resources we are using. We are no longer dependent upon VB
runtime files being installed, or certain pre-existing components.

Because CLR-compliant code is also Common Language Specification (CLS)-
compliant code, it allows CLR -based code to execute properly. CLS is a subset of
the CLR types defined in the Common Type System (CTS), which is also dis-
cussed later in the chapter. CLS features are instrumental in the interoperability
process, because they contain the basic types required for CLR operability. These
combined features allow .NET to handle multiple programming languages. The
CLR manages the mapping; all that you need is a compiler that can generate the
code and the special data needed within the application for the CLR to operate.
This ensures that any dependencies your application might have are always met
and never broken.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

When you set your compiler to generate the .NET code, it runs through the
CTS and inserts the appropriate data within the application for the CLR to read.
Once the CLR finds the data, it proceeds to run through it and lay out every-
thing it needs within memory, declaring any objects when they are called (but
not before). Any application interaction, such as passing values from classes, is also
mapped within the special data and handled by the CLR.

Using .NET-Compliant
Programming Languages

NET isn’t just a single, solitary programming language taking advantage of a
multiplatform system. A runtime that allows portability, but requires you to use a
single programming model would not truly be delivering on its perceived value.
If this were the case, your reliance on that language would become a liability
when the language does not meet the requirements for a particular task. All of a
sudden, portability takes a back seat to necessity—for something to be truly
“portable,” you require not only a portable runtime but also the ability to code in
what you need, when you need it. .INET solves that problem by allowing any
.NET compliant programming language to run. Can’t get that bug in your class
worked out in VB, but you know that you can work around it in C? Use C# to
create a class that can be easily used with your VB application. Third-party pro-
gramming language users don’t need to fret for long, either; several companies
plan to create .NET-compliant versions of their languages.

Currently, the only .NET-compliant languages are all of the Microsoft flavor;
for more information, check these out at http://msdn.microsoft.com/net:

= C#
= C++ with Managed Extensions
= VB.NET

= ASPNET (although this one is more a subset of VB.NET)
= Jscript. NET

In addition, the following are being planned for .NET compliance. To obtain
more information on these languages, visit the following URLs:

www.syngress.com

37

38

Chapter 2 « The Microsoft .NET Framework

Dyalog APL (www.dyadic.com, or directly at www.dyadic.com/
msnet.htm)

CAML (http://research.microsoft.com/Projects/SML.NET)
Cobol (www.adtools.com/info/whitepaper/net.html)
Eiffel (www.eiftel.com/announcements/2000/pdc)

Haskell (www.haskell.org/pipermail/haskell/2000-November/
000133.html)

Mercury (www.cs.mu.oz.au/research/mercury/information/dotnet/
mercury_and_dotnet.html)

ML (http://research.microsoft.com/Projects/SML.NET)

Mondrian (www.haskell.org/pipermail/haskell/2000-November/
000133.html)

Oberon (www.oberon.ethz.ch/lightning)

Oz (reported by Microsoft as under development)

Pascal (www2.fit.qut.edu.au/CompSci/PLAS//ComponentPascal)
Perl (http://aspn.activestate.com/ASPN/NET/index)

Python (http://users.bigpond.net.au/mhammond/managed_python/
ManagedPython.html)

Scheme (http://rover.cs.nwu.edu/~scheme)

SmallTalk (reported by Microsoft as under development)

Don’t see your language on the lists in this section? Don’t worry; it
doesn’t mean it's not going to happen! Several developers have men-
tioned waiting until .NET enters Beta 3 phase before writing a CLR com-
piler for their languages. If you don’t think the particular programming
language you're interested in will do it, write to the developers and let
them know you want your language in .NET.

These developments will enhance your ability to work with multiple languages.
For example, a COBOL advancement that might not exist in VB.NET doesn’t

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

mean that a VB.INET programmer can’t take advantage of it. You can easily find a
workaround for the issue using the COBOL solution as an example or simply
convert the code to VB.NET.

Creating Assemblies

When you have multiple languages, how do they all work together to execute?
Most other programming languages do not use Portable Executable (PE) format
for their executables. With the .NET environment comes something new: a log-
ical approach to executables named assemblies. The CLR handles the entire exe-
cuting of an assembly. The assembly owns a collection of files that are referred to
as static assemblies, which the CLR uses. Static assemblies can be resources used by
the assembly, such as image files or text files that the application will use. The
actual code that executes is found within the assembly in Microsoft Intermediate
Language (MSIL) format. In other words, an assembly is roughly the equivalent
of aVB 6.0 COM component. An assembly has three options that need to be set
when you create it:

= Loader optimization
= Naming

= Location

The loader optimization option has three settings; single domain, multidomain, and
multidomain host. The single-domain setting is the default and 1s used most in
client-side situations. The JIT code is generally smaller when the single-domain
setting 1s used, compared with the other two settings, and there is no noticeable
difference between memory resources. The exception is if the application winds
up being used as part of a multidomain or multidomain host setup, where it will
actually hurt more than it’ll help—such as within a client/server solution.

The multidomain and multidomain host settings apply to the same concept
of multidomain usage. The only difference between the two is how the CLR will
react with the code; in multidomain, the code is assumed to be the same across
the domain. In multidomain host, however, each domain hosts different code.
Let’s say that you have an application development in which all the domains have
the assembly filename, but each one has different code hosted to see how they
can still interact. You would get the best performance using the multidomain host
optimization routine.

www.syngress.com

39

40

Chapter 2 « The Microsoft .NET Framework

You will receive many benefits by setting the assembly to be useable by mul-
tiple applications. Fewer resources will be consumed, since the type (object) will
be loaded and mapped already, therefore the type won'’t need to be recreated each
time it’s needed. However, the end result of the JIT code is increased some, and
access to static items are slower, since the static references are referenced indirectly.

The name of the assembly can impact the scope and usage by multiple appli-
cations. A single-client use application uses the name given to it when created,
but there is no prevention for name collision. So, in order to help prevent name
collisions in an assembly in a multiassembly scenario, you can also give the
assembly a shared name. Having a shared name means that the assembly can be
deployed in the global assembly cache, which you can think of as a global repository
of assemblies.

A shared name is made up of the textual name of the assembly (the name you
created for it) and a digital signature. Shared names are unique names due to the
pairing of the text name and digital signature. This system, in turn, helps prevent
name collision and keeps anyone using the same textual name from writing over
your file, since the shared name is different. A shared name also provides the
required information that’s needed for versioning support by the CLR. This same
information is used to provide integrity checks to give a decent level of trust. (For
full trust, you should include a full digital signature with certificates.) Figure 2.1
illustrates how the shared-name process works.

Figure 2.1 The Shared-Name Process

Assembly 1

Digital Signature is written info Assembly 1 stored in Global

the Manifest. Assembly cache.

Manifest

Assembly 2
Token digital signature
Q in Assembly 1 i created. Assembly 2 token referenced
by the CLR.
Manifest (LR evaluates between the two, and
if both are equal, the CLR verifies

that the data is 100 percent from
the same developer.

Www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

From the shared-name diagram, you can see that the shared name is first cre-

ated into the primary assembly (Assembly 1), then the reference of the primary

assembly is stored as a token of the version within the referencing assembly’s
(Assembly 2’) metadata, and it is finally verified through the CLR.
Once created, an assembly has the following characteristics:

Contains code that the runtime executes PE MSIL code is not
executed without the manifest present. In other words, if the file is not
formatted correctly, it will not run.

Only one entry point An assembly cannot have more than one
starting point for execution by the runtime. For example, you cannot use
both WinMain and Main.

Unit of side-by-side execution An assembly provides the basic unit
needed for side-by-side execution.

Type boundary Each type declared within an assembly is recognized
as a type of the assembly, not as a solitary type initiated into memory.

Security boundary The assembly evaluates permission requests.

Basic deployment unit An application made up of assemblies requires
only the assemblies that make up its core functions. Any other assemblies
that are needed can be provided on demand, which keeps applications
from having the bloated setup files commonly associated with VB 6.0
runtime files.

Reference scope boundary The manifest within the assembly dictates
what can and can’t occur in order to resolve types and resources. It also
enumerates assembly dependency.

Version boundary Being the smallest versionable unit in the CLR, all
the types and resources that it has are also versioned as a unit. The mani-
fest describes any version dependencies.

Figure 2.2 displays a typical assembly. The assembly has been dissected to dis-

play the code, the manifest area, the metadata within the manifest, and the infor-

mation stored within the metadata.
As you can see, all the benefits that CLR gives us are located within the

assembly but reside within the manifest.

www.syngress.com

Y|

42 Chapter 2 « The Microsoft .NET Framework

Figure 2.2 A Typical Assembly

.

Manifest generated by
the Compiler

e
#

Assembly
Information

Code Reuse Interoperability

Version Objects/Types Members

Using the Manifest

Apart from the MSIL, an assembly contains metadata within its manifest. We will
go into detail about metadata and its uses in upcoming sections, but for now just
remember that the metadata is all the relevant information that the CLR needs
to properly run the file, and the manifest stores the metadata. Thanks to the man-
ifest, assemblies are freed from depending on the registry and breaking DLLs (the
cause of DLL Hell). Basic metadata includes the items listed in Table 2.1.

Table 2.1 Basic Attribute Classes

Basic Attribute Class Description

AssemblyCompanyAttribute Contains a string with the company
name and product information.

AssemblyConfigurationAttribute Contains current build information,
as in "Alpha” stage.

AssemblyCopyrightAttribute Copyright information that is stored
as a string.

AssemblyDefaultAliasAttribute Name information and alias
information.

Continued

www.syngress.com

Table 2.1 Basic Attribute Classes

The Microsoft .NET Framework ¢ Chapter 2

Basic Attribute Class

Description

AssemblyDescriptionAttribute

AssemblylnformationalVersionAttribute

AssemblyProductAttribute
AssemblyTitleAttribute
AssemblyTrademarkAttribute

Provides a description of the
modules included within the
assembly.

Any extra version information; this is
not used by the CLR for versioning
purposes.

Product information.
Title of the assembly.
Any trademarks of the assembly.

There are also custom attributes that you can set into the Manifest (see

Table 2.2).

Table 2.2 Custom Attributes

Custom Attributes

Description

AssemblyCultureAttribute

Contains information on the “cultural”

settings, such as base language or time
zone.

AssemblyDelaySignAttribute

Tells the CLR that there is some extra

space that might be empty to reserve
space for a future digital signature.

AssemblyKeyFileAttribute

Contains the name of the file that

contains the key pair for a shared name.

AssemblyKeyNameAttribute

If you use the CSP option, the key will

be stored within a key container. This
attribute returns the name of the key
container.

AssemblyOperatingSystemAttribute

Information on the operating system(s)

supported by the assembly.

AssemblyProcessAttribute

Information on the CPU(s) supported by

the assembly.

AssemblyVersionAttribute

Returns the version of the assembly in

the standard major.minor.build.revision
form.

www.syngress.com

43

44 Chapter 2 « The Microsoft .NET Framework

In regard to the third assembly option, location, a manifest’s location on the
assembly can also be altered, based on the type of assembly deployment. An
assembly can be deployed as either a single file or multiple files. A single file-
assembly 1s pretty much like a standard DLL file, because its manifest is placed
directly within the application. Once again, the assembly is not that different
from the standard executable or DLL; what changes is how it’s run. In a multifile
assembly, the manifest is either incorporated into the main file (such as the main
DLL file) or as a standalone (see Figure 2.3).

Figure 2.3 Manifest Location within an Assembly

Multiassembly
Single File with Manifest

(" N (" N

DLL File DLL File

DLL File

Manifest sugoi.ico check.exe

DLL File image.jpg DLL File logo.bmp

=

Manifest

Multiassembly with Standalone Manifest

NoTE

Depending on what you are doing, you might want to use a standalone
manifest for any multifile assembly. A standalone manifest provides a
consistent access location for the manifest and ensures that it will be
there when needed. However, constantly referencing the assembly can
be a small memory overhead, so its advantage is apparent with larger,
multifile assemblies.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Compiling Assemblies

Creating assemblies isn’t as hard as it might seem. Compilers are available for all
the currently supported .NET languages within the software development kit
(SDK). For Visual Basic applications, the compiler is named VBC.EXE (Visual
Basic Compiler). Any code you need to run through VBC needs to be saved with
the .VB extension. The good thing about this is that you don’t need to stick to
Visual Studio to create your applications. You can use any text editor you want; as
long as you save code with the .VB extension, VBC will compile it for you.

Assembly Cache

The cache on which the CLR relies is called the machinewide code cache. This
cache i1s further divided into two subsections: the global assembly cache and the
download cache. The download cache simply handles all the online codebases that
the assembly requires. The global download cache stores and deals with the
assemblies that are required for use within the local machine—namely, those that
came from an installer or an SDK. Only assemblies that have a shared name can
be entered into the global assembly cache, since the CLR assumes that these files
will be used frequently and between programs.

Even though a file will be used often, however, it could still be sluggish. Since
the CLR knows that to enter the global assembly cache, the assembly must be
verified, it assumes that it is already verified and does not go through the verifi-
cation process, thus increasing the time it takes to reference the assembly within
the global assembly cache. One integrity check is performed on it prior to entry
into the global assembly cache; this integrity check consists of verifying the hash
code and algorithms located within the manifest. Furthermore, if multiple files
attempt to reference the assembly, a single dedicated instance of the assembly is
created to handle all the references, which allows the assemblies to load faster and
reference faster across multiassembly situations.

A file that’s located in the global assembly also experiences a higher degree of
end-user security, since only an administrator can delete files located within the
global assembly cache. In addition, the integrity checks ensure that an assembly
has not been tampered with, since assemblies within the global assembly cache
can be accessed directly from the file system.

www.syngress.com

45

46

Chapter 2 « The Microsoft .NET Framework

Locating an Assembly

Once the assembly is created, finished, and deployed, its scope is basically private.
In other words, the assembly will not in any way, shape, or form interfere with any
other assemblies, DLL files, or settings that are not declared in the assembly’s mani-
fest. It’s all part of CLR’s automation; it used to be that only VB coders had pro-
tection from memory leaks or other sorts of problems by inadvertently creating a
program that went too far out of its area, but now the CLR handles all that.

Now a single assembly is easy to run, and easy for the CLR to locate.
However, when you’re dealing with multiple files, you might ask yourself,
“Wait—if the assembly is so tightly locked, how can multiple assemblies interact
with each other?” It’s a good question to ask, because most programmers working
with .NET create multifile assemblies, and so we need to understand the process
the CLR takes to locate an assembly. It goes like this:

1. Locate the reference and begin to bind the assembly(ies). Once
the request has been made (through AssemblyRef) by an assembly in a
multiassembly to reference another assembly within the multiassembly, the
runtime attempts to resolve a reference in the manifest that tells the
CLR where to go.The reference within the manifest is either a static
reference or a dynamic reference. A static reference is a reference created at
build time by the compiler; a dynamic reference is created as an on-the-fly
call is made. Figure 2.4 displays Step 1.

Figure 2.4 Step 1 of the Location Process

Reference Request)—f
Is it a static?

J to Step 2)

It is dynamic;
create on-the-fly
then proceed.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2 47

Check the version policy in the configuration file. The CLR
checks to see if there’s a configuration file. For client-side executables,
the file usually resides in the same directory with the same name, but has
a *.CFG extension. For Internet-based applications, the application must
be explicitly declared in the HTML file. A standard configuration file
can look like the following example:
<?xm version = "1.0">
<Configur at i on>
<AppDonai n
Pri vat ePat h="bi n; etc; et c; code"
ShadowCOpy="t rue"/ >
<Bi ndi nghbde>
<AppBi ndi ngMbde Mbode="nornal "/ >
</ Bi ndi nghMbde>
<Bi ndi ngPol i cy>
<Bi ndi ngRedi r Name="Test Boy"
Ori gi nat or =" 45asdf 879er 423"
Version="*" VersionNew="7.77"
UselLat est Bui | dRevi si on="yes"/ >
</ Bi ndi ngPol i cy>
<Assenbl i es>
<CodeBaseHit Nane="s_test_nod.dl|"
Ori gi nat or =" 12d57w8d9r 6g7a3r "
Version="7.77"
CodeBase=http://thisisan/hreflink/test.dl />
</ Assenbl i es>

</ Configur ati on>

The document element of this XML file is Configuration. All this
node does is tell the CLR that it’s found a configuration file type and
that it should look through it to see if this type is the one it needs. The
first node contains the AppDomain element that has the PrivatePath and
ShadowCopy attributes. PrivatePath points to a shared and private path to
the bin(s) directory(ies). The path is the location of the assemblies that
you need and the location of the global assembly cache.

www.syngress.com

48

Chapter 2 « The Microsoft .NET Framework

Keep in mind that the PrivatePath attribute is relative to the
Assembly’s root directory and/or subdirectories thereof, and anything
outside of that needs to be either in the global assembly cache or linked
to using the CodeBase attribute of the Assemblies attribute. ShadowCopy is
used to determine whether or not an assembly should be copied into
the local download cache, even if it can be run remotely.

The next node contains BindingMode. Binding mode refers to how the
assemblies within the application should bind to their exact versions.
BindingMode contains the AppBindingMode element, which declares the
BindingMode to be safe or normal. A safe binding mode indicates that this
assembly is of the same Assembly version as the others when the applica-
tion 1s deployed. No Quick Fix Engineering (QFE) methods are applied,
and any version policies are ignored; these characteristics apply to the
entire application. Normal mode is simply the normal binding process in
which the QFE is used and version policies are applied.

The reference that's checked against from the AssemblyRef contains the
following information from the assembly it's asking for: text name, ver-
sion, culture, and originator if it has a shared name. Of the references
listed, the location process can work without all of them except the
name. If it can’t find culture, version, or originator (which only shows
up on shared names), it will try to match the filename and then the
newest version.

BindingPolicy stores the BindingRedir element, which deals with the
attributes that tell the CLR which version to look for. This type of ele-
ment applies only to assemblies that are shared. The Name attribute is the
assembly’s name, Originator contains an 8-byte public key of the assembly,
and Version can either explicitly state which version the assembly should
be redirected to or uses a wildcard (*) to signify that all versions should be
redirected. lersionNew contains the version to which the CLR should be
redirected, and UseLatestBuild Version contains a yes/no value that states
whether or not the QFE will automatically update it.

Assemblies stores the tags that the CLR can use to locate an assembly.
The tags in this element are always attempted before a thorough search.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Name and Originator contain the same information that they contain in the

BindingPolicy. Version contains only the current version of the assembly, and
CodeBase contains the URL at which the assembly can be located. Figure
2.5 illustrates Steps 2 and 3.

Figure 2.5 Steps 2 and 3 of the Location Process

g

’ Step 2

Configuration File I

LT

Bind Redirect Originator |

Get Path Information | |
[

Does it have a ShadowCopy? |

| Bind Redirect use Latest Version? |

Get Binding Mode | ||

Assembly Originator
l

\ Bind Redirect Name | || Assembly Name

| Bind Redirect Version Information |— | Assembly Version

| Does it have a codebase? |

l Step 3 ‘

Yes, access it at the
location defined.

No, assume it is in the local
path or in the PrivatePath.

\WARNING

Even though you can use partial references, doing so not only kills the
whole concept of version support—it can also cause you to use the
wrong file at times. For example, let’s say that you've created a whole
new set of classes and need to benchmark the differences. If you are
using partial references, it’s more than likely that the new version will be
picked over the old version. Be precise, even if it's tedious to do so!

3. Locate the assembly via probing or codebase. When the informa-

tion stored in the Configuration file is retrieved, it is then checked

against the information contained in the reference and determines
whether or not it should locate the file at the specified URL codebase or

www.syngress.com

49

50

Chapter 2 « The Microsoft .NET Framework

via location probe. In the case of a codebase, the URL is referenced and
the file’s version, name, culture, and originator are retrieved to determine
a match. If any of these fails, the location process stops. The only excep-
tion is if the version is equal to or greater than the version needed. If it is
greater or equal to and all the other references check out, the location
process proceeds to Step 4. If no URL is listed for a codebase, the CLR
will probe for the needed assembly under the root directory.

Probing is a bit different and more thorough than looking at the
URL but definitely more lax in verifying references. When probing
begins, it checks within the root directory for a file with the assembly
name ending with *. MCL, *.DLL, or *.EXE. If it’s not found in the
root, it continues to check all the paths listed in the PrivatePath attribute
of AppDomain of the configuration file. The CLR also checks a path
with the name of the assembly in it. Again, if an error is found, the loca-
tion process stops, however if it’s found and verified, it proceeds to Step 4.

Use the global assembly cache and QFE. The global assembly
cache is where global assemblies that are used throughout multiple pro-
grams are found. All global assemblies have a shared name so that they
can be located through a probe. Quick fix engineering, or QFE, refers to a
method in which the latest build and revision are used. It’s done this way
to allow greater ease for software vendors to provide patches by recre-
ating just one assembly instead of the whole program. If the assembly
was found and the QFE is off, the runtime double-checks in the global
assembly cache with a QFE for the particular assembly; if a greater
revision/build is found, that version takes the place of the one found
while probing.

Apply the administrator policy. At this point, any versioning policies
are applied (versioning policies are stored in the admin.cfg file of the
Windows directory) and the program is run with the policies applied.
The only major impact this policy has occurs if an administrator policy
initiates a redirect to a version. If this happens, the version must be
located in the global assembly cache before the redirect occurs. The run-
time assumes that since the redirect is administrative, the user manually
and consciously set it and that the user already has supplied the necessary
file in the global assembly cache.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Private Assembly Files

Private assembly files are normally single applications, that reside in a directory
without needing to retrieve any information or use resources from an assembly
that is located outside its own folder. This does not mean that the private assembly
can’t access the standard namespaces, rather it simply means that they do not use
or require any other external applications to properly function. These types of
assemblies are useful if the assembly will be constantly reused and does not rely on
any other assembly. Private assembly files are not affected by versioning constraints.

Shared Assembly Files

Shared assembly files are generally reserved for multiassembly applications and
store commonly used components, such as the graphical user interface (GUI)
and/or frequently used low-end components. These assemblies are stored in the
global assembly cache, and the CLR does enforce versioning constraints.
Examples of a shared assembly are the built-in .NET Framework classes.

A shared assembly, as you might have guessed, is the exact opposite of a pri-
vate assembly. A shared assembly does stretch outside the bounds of its directories
and requires resources that are found within other assemblies. Shared assemblies
are utilized heavily when dealing with modular applications. For example, a GUI
that 1s used between several applications can be stored as a shared assembly or a
commonly used database routine.

Understanding Metadata

When you create your assembly, two things happen: Your code is transformed
into MSIL, and all the relevant information contained in the code (types, refer-
ences, and so on) are noted within the manifest as metadata. The CLR then
inserts the metadata into in-memory data, and uses it as a reference in locating
what is needed according to the program.This road map provides a large part of
interoperability, since the CLR doesn’t actually need to know what code it’s pro-
grammed in; it simply looks at the metadata to find out what it needs and where
it’s going. The metadata is responsible for conveying the following information to
the CLR:

= Security permissions
= Types exported
= Identity

www.syngress.com

51

52

Chapter 2 « The Microsoft .NET Framework

External assembly references

Interface name

Interface visibility

Local assembly members

The Benefits of Metadata

The items in metadata are placed within in-memory data structures by the CLR
when run. This allows metadata to be used more freely with faster access time.
This system enhances the self-describing functions of .NET assemblies by having
readily available all the items that the assembly requires. This also allows for other
objects (per the metadata, of course) to interact with the assembly.

Metadata also allows interoperability by creating a layer between the
assembly’s code and what the CLR sees. The CLR uses the metadata extensively,
thus removing the burden of operability from the CPU/language. The CLR
reads, stores, and uses the metadata through a set of APIs, most notably the man-
aged reflection and reflection emit services. The layer abstraction causes the runtime
to continue optimizing in-memory manifest items without needing to reference
any of the original compilers and enables a snap-in type of persistence that allows
CLR binary representations, interfacing with unmanaged types, and any other
format needed to be placed in-memory.

You might have been surprised when you saw that the metadata allows
unmanaged types to show up; however, this does not impact the CLR in any
way. Unmanaged metadata APIs are not checked nor do they enforce the con-
straints present. However, the burden of verifying unmanaged metadata APIs is
placed solely on the compiler.

NoTE

PEVerify is a command-line tool enclosed with the .NET Runtime SDK
that checks for you the CLR Image within the PE’'s manifest during devel-
opment. Use it if you wind up migrating VB 6.0 code and have doubts as
to its portability or performance.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

ldentifying an Assembly with Metadata

Metadata identifies each assembly with the following: name, culture, version, and
public key. The name used is the textual name of the assembly or the name you
gave it when you created it. The culture simply references the cultural settings
used such as language, time zone, country/region, and other localization items.
The public key used is the same one generated by the assembly.

Types

In unmanaged code (i.e.,VB 6.0), we referred to types as objects. Types, like
objects, contain data and logic that are exposed as methods, properties, and fields.
The big difterences between the two lie in the properties and fields; properties
contain logic in order to verify or construct data, whereas fields act like public
variables. Methods are unchanged. Types also provide a way to create two different
representations with different types by looking at the two different types as part
of the same interface—in other words, they have similar responses to events.

Currently two types are available to .NET users: value types and reference
types. Reference types describe the values as the location of bits and can be
described as an object, interface, or pointer type. An object type references a self-
describing value, an interface type is a partial description that is supported by other
object types, and the pointer type is a compile-time description of a machine-
address location value.

When dealing with classes, the CLR uses any method it deems fit, according
to the Common Type System. Metadata has a special mark for each class that
describes to the CLR which method it should use. Table 2.3 lists the layout rules
that metadata marks for each class.

Table 2.3 Class Layout Rules

Class Layout Rules

AutolLayout CLR has free reign over how the class is laid out; this
shows up more often on the inconsequential classes.

LayoutSequential CLR guides the loader to preserve field order as defined,
but offsets are based on the field’s CLR type.

ExplicitLayout CLR ignores field sequence and uses the rules the user
provides.

www.syngress.com

53

54

Chapter 2 « The Microsoft .NET Framework

Defining Members

Members are the methods, fields, properties, events, and nested types that are found
within a type. These items are descriptions of the types themselves and are
defined within the metadata. This is one of the reasons that access of items
through metadata is so efficient.

Fields, arrays, and values are subvalues of a value representation. Field sub-
values are named, but when accessed through an index they are treated as array
elements. A type that describes the values composed of array elements creates a
true array type with values of a single type. Finally, the compound type is a value
of a set of fields that can hold fields of different types.

Methods are operations that are associated with a particular type or a value
within the type. For security purposes, methods are named and signed with the
allowed types of arguments and return values. Static methods are methods that are
tied directly to the type; virtual methods are tied to the value of the type.The
CLR also allows the this keyword to be null within a virtual method.

Using Contracts

The signature that methods use is part of a set of signatures referred to as a con-
tract. The contract brings together sets of shared assumptions from the signatures
between all implementers and users of the contract, providing a level of check
and enforcement. They aren’t real types but rather are the requirements that a
type needs to be properly implemented. Contract information is defined within
the class definition.

Class contracts are one of the most common. They are specified within a class
definition and in this case defined as the class type along with the class definition.
The contract represents the values and other contracts supported by the type and
allows inheritance of other contracts within other types.

An interface contract is defined within an interface. Just like the class definition,
an interface definition defines both the interface contract and the interface type.
It can perform the functions that a class contract can, but it cannot describe the
representation of a value, nor can it support a class contract.

A method contract 1s defined within a method definition. Just like a normal
method, it’s an operation that’s named and specifies the contract between the
method and the callers of the method. It exerts the most control over parameters,
specifying the contract for each parameter in the method that it must support
and the contracts for each return value, if there is one.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

A property contract 1s defined within a property definition. The property con-
tract specifies the method contract used for the subset of operations that handle a
named value, including the read/change operations. Each property contract can
be used only with a single type, but a type can use multiple property contracts.

An event contract is defined in an event definition. It specifies method contracts
for the basic event operations (such as the activation of an event) and for any
operations implemented by any type that uses the event contract. Like the prop-
erty contract, each event contract can be used only with a single type, but a type
can use multiple event contracts.

Assembly Dependencies

An assembly can depend on another assembly by referencing the resources that
are within the scope of another assembly from the current assembly scope. The
assembly that made the reference has control over how the reference is resolved,
and this gives the assembly mapping control over the reference onto a particular
version of the referenced assembly. When you depend on an external assembly,
you can choose to let the CLR assume that the files are present in the deployed
environment or will be deployed with the corresponding assemblies. Such an
assumption can be pretty large or problematic, but the CLR is smart enough to
know what to do if it’s not there.

Unmanaged Assembly Code

There are two things that you can do as far as unmanaged code goes—you can
export COM components to the framework or you can expose .NET compo-
nents to COM.

To export a COM into .NET, you will need to import the COM type
library, but remember that a COM library file can be either the standard TLB
file,a DLL file, or an EXE file. Convert the code into metadata by using either
Visual Studio.NET or the Type Library Importer tool.Visual Studio.NET will
automatically convert the COM library into a metadata type library while the
Type Library Importer tool uses a command-line interface that lets you adjust a
couple more parameters than Visual Studio.NET. Define your newly created
COM metadata type in your assembly and compile it with the /r flag pointing to
the dll containing the unmanaged types. Most programmers suggest that an
assembly that works with COM be deployed into the Global Assembly Cache.

If the need should arise to expose .NET components to COM you can, but
it 1s not recommended since you will lose all of the features the .NET framework

www.syngress.com

55

56

Chapter 2 « The Microsoft .NET Framework

has given your code. In fact, if you can avoid it completely for now, do so and
just upgrade your code to .NET or rewrite it completely.

First determine which types are needed for the export. The classes you are
planning to export must match the following criteria:

= Must have a Public Constructor
= All methods, properties, and events must be public
= Classes need to implement interfaces implicitly

= All managed types must be public

Since .NET won’t expose anything that is not public, it will not export any-
thing that is not public. If you have an error with an exported .NET component
that has a missing class, file name, or run-time initialization error, you may want
to go back to your .NET source and figure out if you have fulfilled all of the
above requirements.

The tricky part now is using the System.Runtime.InteropServices namespace.
There are 3 COM classes within this namespace that are used to set the values
needed for your particular COM export and the rest of the classes give your
assembly COM-like attributes. Once your assembly has been properly checked
and assembled, compile it and export it using the TypeLibraryExport.Exe tool.

Now that you’ve prepared the file, you will need to register the exported
assembly(ies) with COM. RegASM.exe (Register Assembly) is a command-line
tool that can register the assembly(ies) needed into the Microsoft System
Registry so your export will have its own CLSID. Once the exported item has
been registered, you can proceed to use this new object within your application.

Reflection

The concept of reflection 1s available to the user via the System.Reflection name-
space. In essence, reflection reflects the composition of other .NET code back to
us. It can discover everything that is vital within the assembly, such as the classes,
events, properties, and methods exposed by the assembly. We can then use this
information to clone an instance of that assembly so that we can use the classes
and methods defined there.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

NoTE

You might have used reflection in VB 6.0 via TypeLib.DLL; however,
TypelLib was limited in that it had to create the “clones” using the IDL
description provided by COM, which can give inaccurate or incomplete
clones. Since all the information for “cloning” is available directly from
the manifest, we don’t have to worry about that anymore.

Using reflection can theoretically provide access to nonpublic information
such as code, data, and other information that is normally restricted due to isola-
tion. .NET provides a built-in check system of rules to determine just what you
can get using reflection. If you really have to use nonpublic information, you
need to use ReflectionPermission. ReflectionPermission 1s a class located within
Object.CodeAccessPermission namespace and gives access to all the nonpublic
information when requested by a reflection. This class can theoretically also give
someone the ability to view your code, so do not use this class if you can avoid it!
You definitely will not want to use this ability on Internet applications. By default
and without needing permission, reflection can access or perform the following:

= Public types

= Public members

= Module/assembly location

= Enumerate assemblies and modules

= Enumerate nonpublic types (have to be in the same location as the
assembly using reflection)

= Enumerate public types

= Invoke public, family access (of calling code class), and assembly access
(of calling-code class) members

Attributes

More a C++ concept than a VB one, an attribute allows you to add descriptive
declarations that behave similarly to keywords. You can use attributes to annotate
types, methods, fields, properties, and other programming elements. They are
stored within the metadata and can help the CLR understand the description of

www.syngress.com

57

58

Chapter 2 « The Microsoft .NET Framework

your code. Attributes can describe the way that data is serialized, describe security
characteristics, or limit JIT compilation for debugging purposes. Perhaps one of
the most versatile of the metadata items, attributes can even add descriptive ele-
ments to your VB code to affect its runtime behavior. A simple attribute may be

used like this:

Public Cass <attribute()> C assName

In this example, the class ClassName is described by the attribute attribute().
This means that when the CLR hits this class, it will alter its behavior according
to what attribute() says.

Ending DLL Hell

Everyone knows what DLL Hell is: It’s the situation that occurs when an older
or newer DLL file overwrites the previous copy after the installation of a new
application (usually a newer DLL that is not backward compatible). Registry set-
tings are changed; some are added, some are removed, and some are altered.
GUIDs could change and, at the blink of an eye, all these things create a situation
where one DLL file prevents your application from working. In order to prevent
DLL Hell, the .NET Framework takes the following steps:

= Application isolation is enforced.

= “Last known good” system from Windows NT systems is enforced.
= Side-by-side deployment is permitted and backed up by isolation.
= File version information is recorded and enforced.

= Applications are self-describing.

Side-by-Side Deployment

Side-by-side execution allows two difterent versions of the same assembly file to
run simultaneously. This is an advantage of the isolation provided to each
assembly. Side-by-side deployment removes the dependency on backward com-
patibility that often causes DLL Hell. Side-by-side execution can be running
either on the same machine or in the same process.

Side-by-side deployment in the same process can be the most strenuous to
code for; you have to write the code so that no processwide resources are used.
The extra work pays oft in that you can run multiple components and objects in
the same thread, allowing for greater process flexibility and usage.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Side-by-side deployment on the same machine puts less stress on the code
writer but still has its quirks. The biggest point to look out for when coding this
way 1s to write in support for multiple applications attempting to use the same
resource; you can work around this by removing the dependency on the resource
and allowing each version to have its own cache.

Versioning Support

Versioning 1s the method .NET uses with assemblies that have a shared name; it
tells the CLR the version of the particular assembly. Each assembly has two types
of version information available: the compatibility version and the informational
version. The compatibility version is the first number, which the CLR uses to deter-
mine identities. The informational version allows for an extra string description of
the assembly that the CLR doesn’t really need.

The version number looks like your typical version—a four-part number that
describes, in order, the major build version, the minor build version, the build,
and the revision. If there are any changes to the major or minor versions, the
assembly is used as a separate entity and isolated. The build and the revision sig-
nify a build compatible to the present assembly, which means that this new ver-
sion contains a bug fix or patch.

The major and minor numbers are used to perform incompatibility checks.
In other words, compatibility is weighed against the major and minor numbers,
and any difterence in either of these two numbers tells the runtime that it is a
new release with many changes and should be treated accordingly. The build
number tells the runtime that a change has been made, but does not carry a high
incompatibility risk. It’s been my experience that relying on the build number at
times 1s very bad practice, especially if the minor change involves your types. In
fact, whenever you change anything, such as how a class is referenced, you should
treat it as a major/minor revision unless you absolutely take all the necessary steps
to make the class backward compatible.

When you do create a backward-compatible class, try to create it as a bug fix
or patch and define the change in the QFE. That way, the runtime assumes back-
ward compatibility is in place, since there should be no major changes (again,
such as class references), and uses it accordingly unless it is explicitly told not to
use it by a configuration file.

www.syngress.com

59

60

Chapter 2 « The Microsoft .NET Framework

Using System Services

System services combine everything that the runtime makes available, such as
exception (error) handling, memory management, and console input/output
(I/0). Some of the topics discussed here might not be new to some VB program-
mers, especially those who have had some exposure to Java or C/C++.

The big change that VB programmers can look forward to is how exception
handling is approached. The way we used to do it involved thorough use of the
debugger and then praying for the executable to not throw an arcane runtime
error. Now we can actually catch any errors thrown and handle them properly.
This also means that we have a better method for tracing error messages.

Memory management really hasn’t changed significantly; only the way it’s
implemented has changed. Instead of programmers having full control over object
instantiation and destruction, the CLR takes over that task. However, we do have
the ability now to create standard command-line programs—something that VB
never had before.

Exception Handling

NET introduces the implementation of a try/catch system through its new
Exception object. Some of you may be already familiar with this concept from
previous JAVA work. A simple try/catch statement can look like the following.

Try

{
Thiswi |l crash();

}

Catch(error_from Thisw || crash)

(

/lreact to the error thrown by Thiswllcrash()

}

So, in essence, a try/catch set will place the function or sub within a try
wrapper that will monitor any error messages. If an error message matches
error_from_Thiswillcrash then the catch wrapper generates the appropriate response
to the error. This will give programmers more flexibility in determining errors
and how they want to handle the error instead of letting Windows do it and
hoping for the best.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Within a DLL file you have a standard file read and file write system.
However, instead of just generating a failure error if the file that needs to be read
is not found, you would rather just display a message that says “this file is being
created” and then creates the file without the user even knowing that an error
occurred. A simple way of doing a try/catch for this situation may appear like the
following:

Try

{
Fi | eReadDi spl ay();

}
Cat ch(Fil e_not _found_error)

{

/1display message "This file is being created"

/lcreate file that matches needed defaults

/1display message "A new default file has been generated.

/1Pl ease reset your defaults."

}

The try/catch system is part of the Exception class. While it’s a pretty neat
ability to finally have in VB, the Exception class also brings with it some extra
goodies for debugging, including StackTrace, InnerException, Message, and HelpLink.

StackTrace

Stacks haven’t changed over the years; a stack 1is still a special type of data structure
in which items are removed in the reverse order in which they are added (last in,
first out, or LIFO). This means that the most recently added item is the first one
removed. StackTrace allows you trace the stack for errors. It is most useful in
dealing with constant errors along loops and within a try/catch statement.
StackTiace 1s useful when it 1s defined before a try statement and when it ends
after the catch statement.

InnerException

An InnerException can store a series of exceptions that occur during error han-
dling. You can then format the series of exceptions into a new exception that
contains the series. It’s almost like a waterfall view, because an exception is

www.syngress.com

61

62

Chapter 2 « The Microsoft .NET Framework

thrown, which in turn throws another exception. Using InnerException, the first
exception would be stored within the last exception and so on, giving the devel-
oper an ample road map to locating the starting point of an error.

Message

Message stores a more in-depth error description. This is extremely useful when
used in conjunction with InnerException.

HelpLink

Using HelpLink, you can set a specific URL or URN within a try/catch block to
point to an article or help file that has more details on the error generated.

Garbage Collection

Memory usage and clean-up have always been valuable features of VB, mainly
due to VB’s preventive method of initializing and destroying its objects. Garbage
Collection is .NET’s method for handling object creation and destruction as well
as cleanup and preventive maintenance. Garbage Collection does not rely on ref-
erence counting, as VB 6.0 and previous versions do; it has its own unique system
for detecting and determining which objects are no longer in use. In this sense,
NET is smart enough to know when a file is being used and when it needs to
be removed. We delve into a full overview of Garbage Collection in the Relying
on Automatic Resource Management section later in this chapter.

Console I/O

We finally have the ability to create console programs in VB! Much of this ability
comes from .NET’s Microsoft Intermediate Language (MSIL) system. Console
applications are those little programs that pop up a DOS box and run from the
command line. Command-line applications can be used in middle-tier situations,
in testing a new class, or even for creating DOS-based functionality for a utility
tool. We have this ability thanks to the System.Console namespace. (We discuss
namespaces later in this chapter.) Here’s a brief example of a simple command-
line VB application:

I nport System Consol e

Sub Mai n()
DimreadlN as String

WiteLine("This is a linel")

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Readl N = ReadLi ne()
WiteLi ne(Readl N)
End Sub

The console would print This is a line! with a carriage return at the end
automatically, giving us one line to write whatever we want. After a carriage
return 1s detected, what we wrote is stored within the variable ReadIN and then
displayed via WriteLine.

Microsoft Intermediate Language

Once your assembly is in managed code, the CLR in turn translates the code to
the MSIL. MSIL is a type of bytecode that gives .NET developers the necessary
portability, but it is also key to the system’s interoperability, since it provides the
JIT compiler with the information it needs to create the necessary native code.
MSIL is platform independent.

MSIL also creates the metadata that is found within an assembly. Both the
MSIL and metadata are stored within an extended and modified version of the
PE (which is more a combination between PE’s syntax and the Common Object
File Format, or COFE object system). MSIL’s flexibility allows an assembly to
properly define itself and declare all it needs for self-description.

The Just-In-Time Compiler

Without the just-in-time (JI'T) compiler, we wouldn’t have any functioning .NET
programs. The JIT turns the MSIL code into the native code for the particular
platform on which it’s running. Each version of .NET for each individual plat-
form also includes a JIT for that specific platform architecture. For example, an
x86 version of .NET can compile .NET code from a non-x86 architecture
because the JIT on the x86 machine translates the MSIL into x86-specific code,
since the MSIL contains no platform-specific code.

JIT’s method of code compilation is literally just in time—it compiles the
MSIL code as it’s needed. This method guarantees faster program loading time
and less overhead in the long run, since JIT compiles what is needed when it’s
needed. MSIL, when created and referenced, creates a stub to mark the methods
within the class being used. JIT compiles just the stubbed code and replaces the
stubs within the MSIL to the location of the compiled code address.

There are currently two flavors of JIT: normal JIT and economy JIT. Economy
JIT is geared toward intensive CPU/R AM usage systems, such as Windows CE

www.syngress.com

63

64

Chapter 2 « The Microsoft .NET Framework

platforms. Economy JIT differs from normal JIT in that, in order to make the best
of the intensive CPU/RAM usage situation, it replaces the stubs in the MSIL with
the actual compiled code, not a reference to its address. Microsoft currently claims
that economy JIT is less efficient than normal JIT for this reason. However, a
decent benchmark exam of these two compilers has yet to be done.

Using the Namespace
System to Organize Classes

We’ve already seen an example of namespaces in the previous code example, but
what are they? Namespaces are references that we place within the code that point
to the location of the object or class that we need to use within the .NET
Framework. In the previous code example, we used the System.Console name-
space. This naming scheme is used only for organizational purposes, but it is vital
that you understand it.

A namespace is basically a hierarchical system created to organize intrinsic
classes that provide the basic functions that come with .NET. Each class is kept
within a namespace that suits its use; for example, Web-related classes are kept
within the System.web namespace. Each namespace can contain namespaces, pro-
viding more functionality for each namespace. The system namespace is the root
namespace on all .NET machines.

VB 6.0 users are already familiar with this concept from COM as the
PROGID (the name of the component and class within COM) component.class-
name. VB 6.0 users are also familiar with COM’s limitations, such as PROGID
naming not allowing more than one level in depth and that its name was global
to the computer. .INET, however, allows for multiple namespaces, classes, inter-
faces, and other valid types declared within it. The following example displays a
sample namespace that contains multiple assemblies and an assembly that is stored
within a namespace:

MyNanespace. nanespace. cl ass
MyNanespace. enum
MyNanespace. i nterface. cl ass

M/Nanespace. Nanespace. cl ass

Here we have the MyNamespace base namespace with multiple namespaces
that in turn contain all the needed operations, functions, and procedures to pro-
vide necessary services. Each namespace can have classes that have the same
name; for example, Assembly3 and Assembly5 can both have a count class. However,

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

within a single namespace there cannot be any duplicate class names. Namespaces
can also be local or global; local namespaces can be seen only by the current
application, and global namespaces can be seen on the entire machine.

The Common Type System

The Common Type System (CTS) gives the CLR a description of the types that
are supported and used and how they are presented in metadata. The type in
CTS represents the type system, which is one of the more important parts of
NET for cross-language support. The type provides the rules and logical steps
that a language compiler employs to define, reference, use, and store information.
If you are using any CLR-compliant compiler outside of the .NET Framework,
it must use the CTS system to properly create the assembly. The type system that
the CTS uses contains classes, interfaces, and value types.

A class 1s now contained within a type. In fact, the term type is sometimes
used (although sometimes erroneously) with the same meaning as object to reflect
NET. The term still has the same functionality as in any other object-oriented
programming (OOP) language. It can define variables, hold the state of objects,
perform methods and events, and create, set, and retrieve properties. Every time
an instance of a .NET class is created, it is treated as an object; you can use it in
the same style that you would use objects in VB 6.0, by accessing its properties,
events, and fields. Table 2.4 displays the characteristics of a class. Table 2.5 displays
the characteristics of the members.

Table 2.4 Class Characteristics

Class Characteristics

Sealed Class derivations are prohibited.

Implements Interface contracts are fulfilled by this class.

Abstract This class can’t be instantiated on its own; in order to use it,
you must derive a class from it—just like abstract classes in
C/C++.

Inherits This means that the class being defined will inherit the

characteristics (i.e., properties, fields, methods) of the class
that is written next to it. You can use the same characteristics
or override them.

Exported This class can be viewed outside the assembly.
Not-Exported This class cannot be viewed outside the assembly.

www.syngress.com

65

66

Chapter 2 « The Microsoft .NET Framework

Table 2.5 Member Characteristics

Members Characteristics

Private Defines accessibility as permitted only within the same
class or a member of a nested class within the same
class.

Family Defines accessibility as permitted within the same class
as the member and subtypes that inherit it.

Assembly Defines accessibility as permitted only from within the

Family or Assembly

Public
Abstract

Final

Overrides

Static

Overloads

Virtual

Synchronized

assembly in which the member is implemented.

Defines accessibility as permitted only by a class that
qualifies as a family or an assembly.

Defines accessibility as permitted from any class.

A nonimplemented member; as with C/C++, you have
to derive a class from it in order to implement it.

A method with the final statement cannot be over-
ridden; this helps prevent any unintentional overrides
that can damage functionality.

Used by virtual methods; it replaces the predefined
implementation from the derived class.

A method that is declared static exists without needing
to be instantiated and can be referenced through all
class instances.

An overloaded method has the same name as another
method and the same code, but its parameters, order of
parameters, or calling convention may be different. This
is useful for adding last-minute functionality to a
method that you might only need once.

Used to create a virtual method in order to have the
functionality provided by Overrides.

Limits usage of implementation to one thread at a time.

NoTE

The Virtual Execution System is tied in with the CTS concept. In fact,
it's a special execution engine that was created just to ensure that the
tenants of the CTS are implemented.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Developing & Deploying...

Abstract Classes?

If you've never used C/C++, abstract classes might be a foreign concept
for you. An abstract class can be defined as a skeleton class that has no
actual code within it—simply a declaration of what a class that can be
derived needs to have within its structure to be considered a derivative
of the skeleton. In other words, the flesh on the bones is added later.

Abstract classes are useful when you need to create some sort of
base class that needs to be reused but have no need for it later—similar
to a blueprint. For example, take the abstract class fruit_eater:

Abstract class fruit_eater

{
Private Me_eat As Integer
Me_eat = 1

Public Property Eat() As Integer
Get
Return Me_eat
End GCet
End Property

End d ass

Publ i ¢ cl ass nobnkey_boy

Inherits fruit_eater

Public Property nme_do_eat() as String
If Eat = 1 Then

'code goes here to tell you that nobnkey_boy eats
fruit!

End |f

Continued

www.syngress.com

68

Chapter 2 « The Microsoft .NET Framework

End Property

End d ass

Using the abstract class fruit_eat, we set a requirement that class
monkey boy must have to say that monkey boy eats fruit. This can be
further expounded to another class, animal _kingdom, that can use
fruit_eat to organize between herbivores and carnivores within its
kingdom of wild animals and monkey_boys.

Type Safety

Type safety limits access to memory locations to which it has authorization. So, if
we have Object A trying to reference the memory location of Object B that is
within the memory area of Assembly C, Object A will not be allowed access.
Even if Object A tries to access a memory location that is accessible by its
assembly and does not have permission, it will be denied. An optional verification
process can be run on the MSIL to verify that the code is type safe. It’s optional
because it can be skipped based on permissions given to the code.

Type-safe code tells the runtime that it can go ahead and isolate the code,
since it’s not going to need anything outside its boundaries. Even if the trust
levels are different within a type safe code, it can execute on the same process.
Code that is not type-safe might cause crashes in the runtime or even shut down
your whole system, so be careful with it. Remember, we’re working with a beta
runtime, and it can be touchy!

Relying on Automatic
Resource Management

We are now getting to the nuts and bolts of .NET. So far, we’ve discussed
enhancements and changes in semantics. However, memory management in
NET is radically difterent. Previously, we used the deterministic finalization
system, in which we declare that the code ran on the class initialization and ter-
mination plus had control over where a class was terminated. Deterministic final-
ization had its drawbacks, because if the programmer forgot to declare the class
empty (null, in some cases) or simply forgot to run the termination event, we’d

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

have a memory leak or worse when control over the project terminated. VB’s
system of destroying classes once the class count reached zero caused some prob-
lems when the last instance of a class was referenced by the last instance of’
another class, and neither class would technically reach zero, so no cleanup was
done.

This outdated memory management system is referred to as reference counting.
A count is kept within each object, usually in its header, of how many references
there are for the object. Each application (or client, as it is referred to in COM
circles) that is referencing an object states when it is referencing the object and
when it is releasing the object. As new objects are instantiated, the count (or
number of objects in the count) is incremented and decremented when the
object is either overwritten or recycled.

The burden of doing the actual cleanup of the object, however, was not on
the application. All the application did was merely issue the destroy command to
the object, and the object then had to free itself from the reference count. When
an object was not properly deallocated (destroyed), we had an instance of a
memory leak. Reference counting also had a limited growth size, because objects
became bloated (made bigger artificially) in order to store the reference count,
and of course cyclic objects generated the previously mentioned nonzero refer-
ence count.

NET replaces all this with automatic resource management. The runtime is now
smart enough to know when and how to handle memory allocation, dealloca-
tion, and usage. A major drawback is that we can’t control when an object or a
class is terminated, and therefore we have no knowledge of when the termination
takes place. This is a very valid point and, quite honestly, the only noticeable
drawback because it won'’t release the memory and so we encounter a dead refer-
ence. However, most of the time this won’t matter, because Garbage Collection
will eventually get to it. Now let’s see how .NET handles memory and how this
relates to Garbage Collection.

The Managed Heap

When a program is run in .NET, the runtime creates the region of address space
it knows it needs but does not store anything on it. This region is the heap (also
referred to as the free store or freestore). NET controls the heap and determines
when it’s time to free an object. Figure 2.6 presents an illustration of the
following pointer interaction process:

www.syngress.com

69

70 Chapter 2 « The Microsoft .NET Framework

1. A pointer is created for the allocated space (heap) that keeps track of the
next available free area on the allocated space that the runtime can use
for storage.

2. As the application creates new objects, the runtime checks to see if the
space currently being pointed to can handle the new object. If it can’t, it
dynamically creates the space.

3. Then the object is placed on the heap, its constructor is called, and the
new operator returns the address block of our newly created object.

Figure 2.6 Pointer Interaction with a Managed Heap

APPLICATION
Initializing the Space
and Pointer
Address
Space

Allocating Space and
Address | verifying Space is correct
Space
Space
Requested
Address
Space

Returning Space and
placing Object on heap OBJECT

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

NoOTE

When an object/type is over 20,000 bytes, a special large heap is created
to store them. This special heap does not go through compression when
Garbage Collection is called. Compression occurs during the generation
process, described in a later section in this chapter.

Garbage Collection and the Managed Heap

As mentioned, .NET handles the managed heap by using Garbage Collection. In
its purest sense, Garbage Collection is an algorithm designed to determine when
the life cycle of an object has ended. In order to determine if an object is at or
near its end, Garbage Collection analyzes the root of the object. Roots (also
known as strong references), much like the actual roots found in nature, act as road
maps to where vital resources, such as objects, are stored. Global or static pointers,
local variables that are on a thread stack, and CPU registers containing pointers
to the heap are all considered roots. All the roots that are visible are stored in a
list created and updated by the JIT and CLR.

Once Garbage Collection starts, it assumes that all the roots available to the
heap are null. This makes the Garbage Collection begin a verification process in
which it goes through each root recursively and starts to make a graph that con-
tains all the references available and any linked references (i.e., Object A references
Object B). This step is repeated once more to make sure that everything is in place
by assuming that if it’s a duplicate object, it’s already on the list and thus a legiti-
mate object, meaning that the graph it just built is correct. The final step of this
verification process is that Garbage Collection starts to trace the root of each
object to determine if the root is coming from the program that is going to use
the current address space. Any objects without roots are considered null or no
longer in use and are treated as garbage, which is an accurate assumption since no
two applications share the same address space, and are promptly removed from the
heap.You can also manually invoke Garbage Collection. It’s not necessary to do
that since Garbage Collection works automatically, but it’s useful for those times
that you find an object that needs to be destroyed immediately (such as an object
that needs to be reset by destroying it and recreating it immediately). You can
manually invoke Garbage Collection as follows:

System GC. Col | ect ()

www.syngress.com

71

72

Chapter 2 « The Microsoft .NET Framework

This code automatically starts Garbage Collection. However, it eventually cre-
ates overhead if used repeatedly, so it’s best to use it sparingly. Roots also provide
the fix to memory leaks and stray resources. The runtime uses the roots to deter-
mine when an object or resource is no longer in use, enabling Garbage
Collection to clean them up. Now that we know how Garbage Collection
works, let’s take a look at just what the Garbage Collection namespace offers (see
Table 2.6).

Table 2.6 The Garbage Collection (GC) Namespace

Property/Method
Type Method Description

Properties—public ~ MaxGeneration Lists the generations that
static the system can support.

TotalMemory This method displays the
total byte space of alive
objects and can occasion-
ally overlap objects that
will be released soon.
This method is used fre-
quently for high-usage
areas, especially the areas
that contain expensive
and/or limited resources,
such as CE.

Methods—public Collect An example of an over-

static loaded method; it forces a
collection of all available
generations. Can be useful
in building your own
garbage collection system
for your particular appli-
cation by analyzing avail-
able generations. You can
then use this information
to force any objects into a
disposal.

GetGeneration Another overloaded
method; it returns the
specific generation that
an object is in.

Continued

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Table 2.6 Continued

Property/Method
Type Method Description

KeepAlive A method that assists in
migrating VB 6.0 code to
VB.NET. Using KeepAlive,
you can tell GC that this
object does not get recy-
cled, even if there are no
roots to it from the rest of
the managed cod by
sending GC a “fake” alive
response.

RequestFinalizeOnShutdown This method is an imple-
mented workaround to a
bug in the beta1
Framework; the .EXE
engine usually shut downs
without calling a finalize
routine. This method
causes all finalization that
needs to be done on
shutdown.

SuppressFinalize This method simply tells
the system to not finalize
a object. Very useful for
helping GC “skip” prefi-
nalized objects (objects
that have been manually
finalized) and thus keeps
GC from wasting time on
something that's not
there.

WaitForPendingFinalizers A really buggy implemen-
tation of a good idea. This
method suspends the cur-
rent running thread until
all finalizers in the queue
are run. However, since
running a finalizer almost
always kicks in a GC, this
method causes a circular

Continued

www.syngress.com

73

74

Chapter 2 « The Microsoft .NET Framework

Table 2.6 Continued

Property/Method
Type Method

Description

Methods—public Equals
instance (all of these
methods are in-

herited from

System.Object

namespace)

GetHashCode
GetlType
ToString

Methods—protected Finalize
instance (all of these
methods are in-

herited from

System.Object

namespace)

MemberwiseClone

loop that will keep
waiting for finalizers as
new finalizers are created.
This method would be
much more useful if it
could target generations
instead.

Checks to see if the object
being evaluated is the
same instance as the cur-
rent object.

Returns the hash function
for a specific type.

Returns the type from an
object.

Returns a string to
represent the object.

Allows cleanup before GC
gets to it. However, the
CLR can decide to
“ignore” this command,
as when the root is still
active or it's considered a
constantly used resource.

Creates a copy of the
current object’s members.

We can use the methods and properties inherent to the Garbage Collection

namespace to formulate a workaround to Garbage Collection having full control

over the disposal of objects. (Remember, the runtime controls the memory allo-

cation through Garbage Collection; that includes the destruction of objects.) An

example of this code would be:

I mports System

' cl ass/ nodul e/ assenbly code here to do whatever you want

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2 75

pl ease note that this is just an exanple and is non-functioning.
' there is a very good functional exanple of this simlar process
" available in the .NET SDK Sanples under the GO/ VB fol der of the
' SAMPLES directory.

now that we have the objects / resources set, let's create a typical

Di spose cl ass.

Public O ass Di sposeMe
Inherits Object

Public Sub Di spose(obj Nane as String)
' obj Nane woul d be received by previously using the

"ToString Public Instance Method and storing the value in a string.
Finalize

GC. Suppr essFi nal i ze(obj Nane)
End Sub

Protected Overrides Sub Finalize()
" no clean-up code needed; this will cause Finalize to be run
End Sub

End d ass

‘"note the use of SuppressFinalize to keep the GC fromrepeating itself.

Congratulations! We’ve just resolved one of the basic problems of Garbage
Collection. With this example, we can successfully control manual termination
of objects and resources. It’s best to reserve this type of workaround for intensive
resources.

www.syngress.com

76

Chapter 2 « The Microsoft .NET Framework

Debugging...

Don’t Use a Raw Finalize Method!

Garbage Collection allows a small emulation of the Class Terminate
event via the finalize method. However, the finalize method does not
supercede the authority of the Garbage Collection/CLR, and it may not
be instantly implemented if the Garbage Collection/CLR assume that the
resource/object is still needed or in use. It could very well be a couple of
calls too late before it's shut down. This is especially frustrating when
you need to remove an object for program flow. Finalized objects:

= Are promoted to older generations causing unnecessary
heap usage

= Have longer initialization times

= Are out of your control as to when and where they are
actually terminated

» Cause any other objects that are associated with them to be
finalized, adding more strain to the heap

» Can prolong the lifetime of other objects that are referenced
from the finalized object

For these reasons, it is better to avoid using finalize by itself. If you
determine that you must use it, make sure that you avoid all actions that
could interfere with the finalize code, such as creating an instance of the
finalized object after you run the finalize method, thread synchroniza-
tion operations, and any exceptions from the finalize method.

Resurrection is a side-effect of finalization. Sometimes we’ll be pre-
sented with a situation in which an object has been finalized but there is
still a pointer to it, meaning that Garbage Collection assumes it's alive
when it’s been already finalized. A typical scenario is to finalize an object
in order to create a new instance of the same object; if the first object is
still there in finalization, the pointer points to the old object, and the
object, while in finalized stage, never gets cleaned out properly because
it's got a reference from the application. It's important that if you finalize
something, you set a flag or a check routine to make sure that it's gone
before you try to do anything else concerning that object type.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Assigning Generations

Garbage Collection uses an ephemeral garbage collector, which describes the life-
time of an object in generations. Using this system, the garbage collector makes
the following logical assumptions:

= Newer objects have shorter lifetimes.
= Older objects have longer lifetimes.

= Newer objects are created around the same time and have strong
relationships.

= Compacting a portion of the heap is faster than compacting it
completely.

Let’s look at a new heap. Once the heap is created and the first set of objects
are instanced, they are created and set as Generation 0. As a new set of objects is
created, Garbage Collection checks to see which objects from Generation O still
exist (see Step 1 in Figure 2.7). Those that do exist are compacted, moved above
Generation 0, and become Generation 1 (see Step 2 in the figure). As the new
Generation 0 enters the same process, so does Generation 1. Any remaining
members of Generation 1 become Generation 2, and those that survived
Generation 0 become 1 (see Step 3 in the figure). Then the new Generation 0 is
created. At this point, the process continues, but there can be no higher genera-
tion than 2; any survivors from any subsequent Generation 1 members are placed
in Generation 2 with the previous Generation 1 members that survived. This also
means that a complete heap compacts portions at a time, thus increasing overall
speed.

Objects within Generation 0 are checked more frequently than the other two
generations due to .NET’s philosophy that new objects are more likely to be the
first to be removed. In other words, the longer an object is alive, the more likely
it 1s to stay alive.

Utilizing Weak R eferences

Another innovation that stems from the roots concept is weak references; a weak
reference is a weak link to an object in memory that has been or is in the final-
ization process. It acts like a root will be collected by Garbage Collection the
next time it runs. A strong reference, on the other hand, represents the primary
object creation. Without a strong reference, you can't really create a weak one.

www.syngress.com

77

78 Chapter 2 « The Microsoft .NET Framework

Figure 2.7 Generations

!

Object 01 ([Objectinuse |

Generation 2

Object 01 || Ohject in use Object 04 || Object in use
oot ||| o | || O

i

Generation 1

Object 01 Object 04 +—| Object in use Object 07— Objectinuse |
Object 02 Object 05 +—| Object in use Object 08 *
Object 03 Object 06 —| Object not in use Object 09— Object not in use

I
i

Generation 0 Generation 0 Generation 0
Step 1 Step 2 Step 3
Objects within Generation 0 are Objects within Generation 0 that Objects within Generation 0 that are still in
evaluated to see which ones are are sfill in use are moved up fo use are moved up to Generation 1. Objects
still in use. Generation 1. New objecis are that are still in use within Generation 1 are
placed within Generation 0. moved up to Generation 2. This process

is repeated and no new Generations
are created over Generation 2.

Weak references can provide a workaround when you are dealing with
memory-intensive objects and avoid the cost of constantly recreating and reini-
tializing objects. Imagine an object that traverses a database and stores a set of
sorted fields. If the database is small enough, it can rest in memory without
problem. However, if the database is large, we run the risk of over loading our
resources every time we have to create a new one. Using a weak reference, we
can bypass having to create a new object and redoing the sort by keeping the
items we need on standby. You can then recreate the strong reference by pointing
to the weak reference.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Security Services

Security services are not to be confused with the security concepts offered by
.NET. Security services provide a type of check and balance within code, meta-
data, and MSIL. Security services ensure that the CLR gets what it expects, that
it’s getting it through either the same developer or a trusted source, and that
future references to items usually denied access to due to isolation can be granted
access.

In .NET, the Virtual Execution System (VES) handles all the security
checking. Type safety is enforced through the VES by matching the same strong
types in metadata with the corresponding MSIL (local variables and stack slots).
You can look at it as a technical diagram; it draws a very strong line pointing
from the metadata to the MSIL and makes sure that everything matches up to
the correct declaration and memory space.

The VES also covers versioning safety. Since the VES lines everything up, it
also goes ahead and verifies that all the information that’s being checked also
passes the version check.The VES also makes sure that the CLR will see what it
gets—in other words, that the CLR will work within the assumptions it made
about the code.

However, in order to make an assumption about the code, the CLR must be
sure that the code is a proper executable. Again, the VES intervenes by providing
the only three methods that a code can use to become executable: class loader,
legacy-code-based platform invoke, and, for migration purposes, an unmanaged COM
interop. Using the legacy-code platform invoke and the unmanaged COM interop
can cause some performance issues, so it’s best to avoid them altogether when
writing or migrating code and to stick to the class loader. The class loader con-
nects implementations to the information about the implementation within a
metadata. The VES also uses the class loader to determine who is trying to access
a type and thus takes the advantage to determine accessibility.

In addition, the VES has access through the CTS, to the permissions that are
stored within metadata to access methods. It checks each type against the permis-
sions and marks each type that has permission with a stub in the loader (the JIT

www.syngress.com

79

80 Chapter 2 « The Microsoft .NET Framework

and the linker also use VES to do the same) that tells the CLR to enforce the
permissions to which the stub points. This is called declarative security.

NoTE

Even though the CLR is impressive in terms of detection algorithms, it
has a drawback in that it’s still simply a logical system. It can’t tell when
someone might trick it (although the CLR is very stringent, thus making
it hard to trick). To prevent that, we can use imperative security; that is,
we can set the rules in our code.

Framework Security

Code access security and role-based security are the two types of security provided by
the. NET Framework itself. They are mechanisms that are geared toward a keep it
simple mentality regarding how to decide what a user can do.The keep-it-simple
idea is based on consistency, and providing easy transitions from code-based to
role-based security and back. The fundamentals that give the .NET security its
robustness are permission, principals, and security policy.

Code access security, as you might have noticed, provides varying degrees of
trust for an application. It can change these degrees according to the information
that the assembly provides, such as developer, version, and the like, since this
information is stored in the code. When the process of determining if a particular
code can access, the runtime checks the current call stack of the code looking for
the permission, however if it can’t find permission, it throws an exception.

Role-based security makes an authoritative decision based on the principal
value from the current thread making the request. The role(s) listed within the
principal value are then evaluated, and the action/ability requested is given or
denied.

Financial software programmers and database coders might be already familiar
with the concept of role-based security. Usually, in these situations, when a client
requests access to a certain part of the system or resource, a check is run to deter-
mine from what role the client making the request comes. Let’s say that a
member of the group Alpha is trying to access a resource located with a member
of the Omega group. Alpha starts the connection and Omega picks off the first
principal from the connection thread. The principal is then analyzed for roles, and

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

Omega determines that the Alpha workgroup does not have permission for all
the resources—just two of them. Omega allows the connection but limits Alpha’s
request to the two resources. If Alpha tried to obtain a resource outside those
two, the request would be denied.

Granting Permissions

Permission is the basic building block of security. Some view permission logically
as a response given to a query in order to gain access, while others look at it as a
key fitting into a lock. Both views are equally correct. Permissions in .NET are
used via requests, grants, and demands.

A code can request permissions to see if it can access a file. If it doesn’t fall
under those permissions, you could have a function grant permission to the code
that’s making the request. If a code with the permissions ready comes along, you
might want to implement an added layer of permission called demand. In other
words, while the code might have the basic permissions needed in order to satisty
the need, the code can also demand that (a) specific permission(s) be present.

Both code access security and role-based security have a list of permissions (see
Table 2.7).

Table 2.7 Code Access Security and Role-Based Security Permission Lists

Code Access Security

Permissions Description
DnsPermission Provides access to a Domain Name System.
EnvironmentPermission Provides access to the ability of read/write/query

environment variables. Write access also includes
the ability to create, remove, and write.

FileDialogPermission Provides access to files acquired via a file dialog
box.
FilelOPermission Provides access to perform low-level (through

stream) read, write, append, or create directories.

IsolatedStoragePermission Provides access to an area that is attributed to a
specific user within a part of the code identity.

ReflectionPermission Used in conjunction with System.Reflection to
have permission to find out information about a
type at runtime.

RegistryPermission Provides access to registry and the read, write,
create, delete registry functions; applies to keys
and values. If you truly want to make people

Continued

www.syngress.com

81

82

Chapter 2 « The Microsoft .NET Framework

Table 2.7 Continued

Code Access Security
Permissions

Description

SecurityPermission

SocketPermission

UlIPermission

WebPermission

who use your .NET code happy, use the .NET and
don’t use the registry anymore. This permission
is really more a migration step.

Provides the ability to do actions that are
normally not allowed, such as calling into
unmanaged code and skipping the verification
process. Use this with caution; it can lead to
holes in your system that can be used to access
other parts of it.

Doesn’t really grant any ability; either accepts or
creates any attempted connections at a given
transport address. Using this permission in con-
junction with SecurityPermission for executables
can cause some bad things to happen.

Provides the ability to use the functionality
provided by the user interface.

Just like SocketPermission, it either accepts or
creates any attempted connections from/to a
Web address.

Role-Based Security
Permissions

Description

PrincipalPermission

Demands that the identity of an active principal
match. (See the Principal section for more
information.)

Gaining Representation through a Principal

Have you ever wanted a go-between to plead your case to the program to get

access? A principal provides just that function. Depending on the situation, a prin-
cipal provides the permission level needed on your behalf to enter. The CLR lets

the principal in, but it’s not letting you in, because the CLR only allows you to
do what the principal is supposed to.

A generic principal is your run-of-the-mill representation that you can use
to find out what someone that’s not unauthenticated can see. Although this is

not practical in an everyday program, it is very useful for testing and debugging

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

situations and 1s extremely helpful when trying to determine situations in which
a permission shows up that you didn’t plan for.

Custom principals are created on the fly by an application to suit a current
need or requirement. They extend the basic usability of a generic principal but
are dependant on having the proper authentication modules and types given to
them by the application. This dependency gives the custom principal an element
of security since it can’t work without being given what it needs to work.

NoTE

A special class of principal—the Windows Principal—represents strictly
Windows users. It uses this impersonation to get roles that are available
for that particular user.

Security Policy

The rules that the CLR follows are referred to collectively as the security policy. The
local administrator determines these configurable rules. Once an assembly is
attempting to load, the security policy is checked to see what permissions the CLR
can grant the assembly. It determines various possibilities and then, if it passes, pro-
vides the needed permissions or simply does not allow the program to run.

Three levels specify security policy: the local machine policy, the application
domain policy, and the user policy. The runtime uses all three of these policies to
filter out the final security policy that will be placed on the assembly and thus
determines its permissions. Both the user and the application domain policy
specify the set of permissions that are allowed, and then this set of permissions is
compared to the machine policy. The permissions that are not filtered out
become the security policy.

Application Domains

An application in .NET runs in a domain that’s managed by a host. This host can
be a shell host (launches .EXEs from a shell), a browser host (runs code from the
site), a server host (ASPINET; runs code that handles requests on a server), and a
custom-defined host. When one of these create the application domain, for
example, the shell host—which would be Windows—sets the policy that the
code must deal with under that domain. The policy generated cannot be added
to but can be made more flexible by the host.

www.syngress.com

83

84 Chapter 2 « The Microsoft .NET Framework

After an application domain policy is set, the new policy applies only to
assemblies that are loaded after the creation of the new policy. Any previous
policy holders will have their previous policy covered and won’t have to use the
new one unless reloaded. Once the main assembly is loaded and the first refer-
ence to another assembly is made, the loader kicks in, places the assembly into
the appropriate application domain, and then returns the information (referred to
as evidence) that proves it can be trusted (will return versioning information to
verify) to the runtime. Table 2.8 displays the evidence that is/can be returned.

Table 2.8 Evidence

Application Directory Where the Application Resides

Custom An evidence created by the user or system defined;
great for making 100 percent that sure it's the
correct evidence.

Hash Returns the hash encrypted in MD5 or SHAT.
Publisher The AuthentiCode signature provided by the code.
Site Location of origin.

Strong Name Assembly’s strong name.

URL URL of origin.

Zone Zone of origin—for instance, Internet Zone. Matches

the zones listed in your Properties box for IE under
the Security tab.

www.syngress.com

The Microsoft .NET Framework ¢ Chapter 2 85

Summary

VB.NET is the first true version of VB released with a complete redesign after
VB 4.0 came out. All the limitations that Visual Basic programmers have found in
the past, such as being limited to windowed applications, are now completely
gone. Visual Basic programmers can now take part in the console programming
world and use the tricks associated with that world to create better programs and
optimize batch files.
With the interoperability that .NET provides, programmers can use any lan- : ".
guage to overcome any of VB’ language shortcomings. Any custom class written in
any language, such as LISP, can be used and referenced by an assembly written in
VB.NET and vice versa; C/C++ developers who would like to use some of VB’ '
more robust functionality for windowed applications can now simply build the)
GUI out of VB and the implementation in C/C++ with no problems whatsoever.
The fuel for this new interoperability comes from .NET’s CLR and MSIL.
The CLR compiles any MSIL-generated code for our use without having to
worry about what compiler was used to create it. The new deployment system,
assembly, creates a standard way of looking at deployable files and removes our
dependence on the registry and DLLs by including a road map of what it needs
within the metadata. To top everything off, the burden of providing security is
removed (somewhat) from the developer and placed in the hands of the CLR.

Solutions Fast Track

What Is the .NET Framework?

M .NET provides developers with new possibilities for creating
applications.

M The CLR changes the way that programs are written, in the sense that
VB developers won't be limited to the Windows platform.

Introduction to the Common Language Runtime

M The CLR is the heart of the .NET Framework. It provides a lot of the
functionality that .NET uses.

M CLR will provide the function of translating the application from its
internal code to code within the native environment.

WWW.syngress.com

86 Chapter 2 « The Microsoft .NET Framework

M Managed code will be able to get the most of the new .NET features
from the CLR.

Using .NET-Compliant Programming Languages

M Programming for .NET is not limited to the Microsoft standard lan-
guages. Any compiler that follows the Common Type System and other
requirements for .NET can be created for any programming language.

M .NET’ new interoperability allows us to use each language’s strengths to
counteract weak areas.

M Difterent programming languages will have the same method of
communication within each other, ensuring true interoperability.

Creating Assemblies

M The new deployable unit for .NET is an assembly. It is more like a
logical DLL file than a true executable file.

«

M All the information that the CLR needs to properly run an assembly is
located within the assembly itself.

M Each assembly file consists of the internal code, the manifest area, and
the metadata contained within the manifest area.

Understanding Metadata

M Metadata contains the map that .NET uses to layout objects in memory
] J and how they are used.

M The manifest area within the assembly contains the metadata.

Using System Services

M More control is given to exception handling through the try/catch
system.

M The automatic resource management system for .NET is smart enough

to know when objects are in use and when they need to be removed.

WWW.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

This takes the burden off the programmer, but the programmer can
always opt to declare when an object should be removed.

M Console applications are now within the reach of VB programmers
through the intrinsic System.console namespace.

Microsoft Intermediate Language

M MSIL is the bytecode that the just-in-time (JIT) compiler utilizes to
create native code for the assembly file.

M MSIL is platform-independent.
M The code within a .NET application is converted to MSIL.

Using the Namespace System to Organize Classes

M A namespace provides an organizational hierarchical system for classes.

M Each class that specifies to a specific function is stored within its
respective namespace.

M The System namespace is the root namespace of all namespaces in .NET.

The Common Type System

M The Common Type System is the way that types are supported within
the runtime.

M The CTS also specifies how types can interact with each other and how
they are displayed as metadata.

M The CTS provides the rules that types must follow in order to work
with .NET.

Relying on Automatic Resource Management

M The managed heap system replaces the reference count system.

M The object cleanup is referred to as Garbage Collection. .NET controls
when Garbage Collection runs and when an object is removed.

87

88

o

Chapter 2 « The Microsoft .NET Framework

M The burden of object cleanup is placed more within .NET than on the
developer.

Security Services

M Permissions are the rights needed to use a resources. There are many dif-
ferent types of permissions that can be used in any event and are pri-
marily used within code access security.

M The principal acts as a go-between for you to get the permissions
needed. There is only one type of principal. Principals are used within
role-based security.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: I've heard that there has been a significant change in VB.NET since Beta 1.
Will this affect the Framework?

A: No.The changes being done to VB.NET are actually changes to allow
backward compatibility with VB 6.0 semantics. They do not truly affect the
portability or the CLR.

Q: What are the changes to VB.NET in Beta 2?
A: The changes are as follows:
= VB.NET will default TRUE values to —1 again instead of 1. Just as in

VB,VB.NET also applies to explicit (using Cint() and so on) and
implicit conversions (giving an integer the value of the Boolean).

= And/Or/Not/Xor will return to being bitwise operators instead of pure
logic. This removes BitAnd, BitOr, and BitNot operators from VB.NET.

WWW.syngress.com

The Microsoft .NET Framework ¢ Chapter 2

» And/Or/Not/Xor will be returned to VB 6.0 order of operator
precedence.

= AndAlso and OrElse will be introduced to create the “short-circuit”
behavior once used by And/Or/Not/Xor.

= Arrays will now be declared using an upper bound, as in VB 6.0.

Q: Do I have to use Visual Studio.net or a Microsoft-endorsed editor to create
my VB.NET files?

A: No. With the implementation of VBC.EXE, you can use any editor you want
to write the code, without suffering any bugs or problems.

Q: s it better to learn and rewrite my existing VB 6.0 applications in VB.NET
or to make the necessary changes to my VB 6.0 application to run on
VB.NET?

A: That’s a subject of debate. It all depends on the size of your code. Naturally,
smaller programs will be easier to convert to VB.NET; even if you do convert
to .NET, you might still miss out on the advantages VB.NET has over VB 6.0.
On the other hand, learning and rewriting a complete program in VB.NET
can be time consuming. Keep these considerations in mind when deciding
what you should convert and what you should rewrite.

89

Installing and

Configuring VB.NET

Solutions in this chapter:

Editions
Installing Visual Studio .NET

: The New IDE

Customizing the IDE

Summary
Solutions Fast Track

Frequently Asked Questions

Chapter 3

91

92

Chapter 3 ¢ Installing and Configuring VB.NET

Introduction

Prior to beginning Visual Basic .NET installation, you should make some prelim-
inary checks first. You must verify that you meet the system requirements for
installation. When you install Visual Studio .NET, it will also install the MSDIN
for Visual Studio .NET, which contains valuable information on .NET develop-
ment. You can also install sample projects that help you learn .NET. If you aren’t
sure whether you need a component during installation, you can always add
components later.

The Integrated Development Environment (IDE) has some changes, but it
should be familiar to those of you who have used Visual Basic 6.0 and Visual
Studio. All projects, regardless of the programming language, will be developed in
the same IDE now. When you start Visual Studio .NET, you no longer choose
between tools such as Visual Basic or Visual C++; you just start Visual Studio. To
keep in line with the new Internet strategy, Visual Studio starts with a home
page. It contains links for various items, and you can customize it to your liking.
You will see some new project options available. If you have used Visual Interdev
6.0, you are already familiar with the task list that is now available. The tabbed
child windows feature makes navigation between windows easier. The new IDE
makes development much easier, as we will see.

A new feature of the IDE is that it can be customized to your liking. You can
customize the home page for the links you prefer, create a profile that will con-
tain some preset defaults for difterent types of programmers, and choose from
several windows layouts and keyboard schemes. In this chapter, you will learn
how to install Visual Studio .NET, explore the new features of the IDE, and learn
how to customize the IDE to fit your needs.

Editions

Currently the Beta 2 version of Visual Studio .NET includes only the compo-
nents that will be found in Visual Studio .NET Professional Edition. Microsoft
plans to release at least two other editions, named Visual Studio .NET Enterprise
Architect and Visual Studio .NET Enterprise Developer.Visual Studio .NET
Enterprise Developer will include a host of tools to assist developers with the
process of building custom applications to use on the .NET platform including
modeling features, core reference applications, and testing capabilities. Visual
Studio .NET Enterprise Architect will include tools to simplify the job for

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3 93

architects of XML-based Web services. Neither of the Enterprise editions are
widely available as of the printing of this book.

Installing Visual Studio .NET

You can install Visual Studio .NET on Windows 2000 and Windows NT 4.0.You
can execute code in Windows 98 and higher. Be aware that this product is still
under development; installing it on a production or development machine is not
advisable. There is also no guarantee that the applications built using Visual Studio
.NET Beta 2 will work the same way in the released version. Also, it is not advis-
able to create and deploy production applications using Visual Studio .NET Beta
2.Visual Studio .NET Beta 2 is designed for evaluation and academic purposes
and fit for installation only on test machines.

Visual Studio .NET Beta 2 should successfully install and interoperate
with existing Microsoft products including Visual Studio 6.0 and Visual Interdev.
However, certain issues might arise, including security issues. Make sure that
you read the release notes in Readme.htm, located in the root of Visual Studio
CD1.You can look for the latest information in the Beta 2 Web site at
http://beta.visualstudio.net.

Visual Studio .NET Beta 2 requires that a specified number of Windows
components be present on the machine before it is installed. The first step in the
installation process is to install the following Windows components:

= Windows 2000 Service Pack 2

= Microsoft Windows Installer 2.0

= Microsoft FrontPage 2000 Web extensions client

= Setup runtime files

= Microsoft Internet Explorer 6.0 and Internet tools

= Microsoft Data Access Components 2.7
= Microsoft .NET Framework

Some of these system components, such as the .NET Framework, are still in
beta stages.Visual Studio .NET requires that the user be an Administrator on the
local machine. Given that the user is required to log on as an Administrator,
potential security issues may arise that could be exploited maliciously. Because
this 1s a beta version of the product, the installation might not complete success-
fully (or be aborted midway), and in these situations the password could remain

www.syngress.com

94

Chapter 3 ¢ Installing and Configuring VB.NET

in the registry. If this happens, the administrator password becomes easily acces-
sible. The minimum hardware requirements for installing Visual Studio are listed
in Table 3.1.

Table 3.1 Minimum Hardware Requirements for Installing Visual Studio

Hardware Type Minimum Requirement Recommended

Processor Pentium 2 processor with Pentium 3 processor with a
a speed of 450 MHz speed of 600 MHz

Memory 128MB 256MB

Hard Disk Space 3GB 3GB

Video Settings 800 x 600, 256 colors High Color 16-bit

CD-ROM Required Required

Exercise 3.1: Installing Visual Studio .NET

The three phases for installing Visual Studio .NET are as follows:

= Phase 1 involves installing Windows components.
= Phase 2 involves installing Visual Studio .NET.
= Phase 3 involves checking for service releases.

Installing Visual Studio is not a difticult task. In this exercise, we walk through
the steps necessary for installation:

1. To start the installation, insert the Visual Studio .NET CD-ROM. If
installation does not start automatically, double-click setup.exe to start
the installation. Setup launches the initial screen shown in Figure 3.1.

2. Click Windows Component Update to bring up the End User
License Agreement screen, shown in Figure 3.2.

3. Click the I accept the agreement button to accept the user agree-
ment, and the screen shown in Figure 3.3 appears. This screen lists the
required Windows components for running Visual Studio .NET.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Figure 3.1 Installing Windows Components

Moo s ofts

Visual Studio.NET Setup

warwon of thess Wradoear oo porseTis

Winloras Uiiioieivl Uislale
SRR Nl CRERCIE G T BT Eoael of The Windang compesiEniE that
wre irartals d an yoar compans de act mrich Hhes veemen

-

ragurnd far Virasl Sudo HET. rou ment inetsll & diferart

Cani#l

Figure 3.2 End User License Agreement

End Ussr L #nige Agre s s nk

AR E O il
i TN T

Frisk Licaner figreemest

a0 greegl e agrecmesl

CF 1 e el aceph Bhe goreeme ol

o VP weia KE | ' webamr L emponsesd Updade Sohup

g

Er rare itz corviulp rosd ared underriaed sl o e nphis and rerircbomm

damnied m the EULE. Feu el ke sabed o renes ard edbes g ooepf or no®

Somepl g beerns of the BULR. T prosdust sdl rad, 508 o on paar cameaules
yEl SEADE e Bemes of the FLILL R gl Tl isfrpnas,

ha teut Bl thes ELLA Froem the aadstet fle of thie pea dd

Tod miEp sRe eeares § copp of Hhie [LLR by carisciag Be Hercach

iubsisdiary 18rARg Yo ST E, o B8 Aning B Miooesk Sala

Bl e b e i B e il BB e Y ke A

=

Lancal

www.syngress.com

95

926

Chapter 3 ¢ Installing and Configuring VB.NET

Figure 3.3 Windows Components

o Woianl S HE T Wb i Damporwss Hjelss 5o

W i snl Seeha WET

Windows Component Update

Wrrdame Commarent Updain Al raial B fellicsng comparends reguered fer
Swanl Shadw HET T.E
A5 Wandess 0D kervics Fack 3
merragodt Windasse ingtallse L0
Fiiprasoll FramPage 200 Welb Esbe s Clical
Sckap Burdme Filey
A Hiorasot Eekarrat Explerer &8 aed [ntereat Taols
Fikrasol Daia Acceas Compensabs 2.7
mareaaodt HET Feu nes s il

=:. Hehal reguiieed

Hare il albon Eark Lgnlinme Laiie

4. Click Continue, and the screen shown in Figure 3.4 appears. Installing

windows components requires rebooting the machine several times.
Setup gives you an option to enter your password to do an unattended
install. Setup uses the password to automatically log the user in after
every reboot. Checking the Automatically log on check box enables
the two text boxes. Type the password in the first text box. Retype the
password for confirmation in the Confirm Password textbox.

After you specify the password, click Install Now! to begin the installa-
tion of Windows components. The setup program installs the compo-
nents shown in Figure 3.3 and automatically reboots the system when
necessary. This marks the end of the first phase of installation. Figure 3.5
shows the screen that appears after all the necessary Windows have been
successfully installed.

The next step is to start installing Visual Studio .NET, which constitutes
the second phase of the entire installation procedure. After you click the
Done hyperlink, setup shows you the same screen you saw in Figure
3.1, but this time the second link is enabled, and the first and third
hyperlinks are disabled. Figure 3.6 shows you the beginning of the
second phase of installation.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Figure 3.4 Automatic Logon

o Vil S HE T \wesdsn Comperent Upsisin Selep

LE P 5 L TS R Tt

Windows Component Update

et il BartiEatic Lisg

i Sriap mepht rsgers v b recbert s msdhing ofel o mers AL,

& #Arlameic log on dosd rok scosyt blark peig Aorde I paw ces & Glank
paaRerd, cick [rvtall Mo o procssd .

m P
e i3 Bl

[T |

Ecsion padirrad |

Harp Infermilion Biack Insiall bl Camcal

Figure 3.5 Windows Component Update Summary

Wl S HE | e [omperent Updas Sober

Mol e

el Shwic M T ‘#raioes Uormponent Uil

Congratulations

Winda s Compenent Updsis fummery

The Telanineg cormpsrsnic ndalied succeaafally

« Windaws I000 farvice Fack 2

e e ol Winda e Inetallsr 300

e e g ol FeailPags TANE Wieh B il Fadined lasi
Sctup Burkene Files

Hirosoit Isbereat Esplarer £ snd Inftemed Toels
Ferasch Dele Acorss Companenis 2.7

Maiaandt MET Framiesak

LU T L B A

Vign Tis pRading for addionsd infermatean ind troddd 8 dhis cfineg bt

www.syngress.com

97

98 Chapter 3 ¢ Installing and Configuring VB.NET

Figure 3.6 Second Phase of Installation

o #rwed Chnba BE T foshup

(LR P

Visual Studio NET Setup

2 Winual Sludis HET
Inix i h (1t
1

FEL T Lt

7. Click Visual Studio .NET, and the setup program copies the files
necessary for installation and displays the screen shown in Figure 3.7.

Figure 3.7 Beginning Visual Studio .NET Setup

L5

Where do you want to 2o today?

1
= = -
Visual Studio.NET
BEAFT I T ieitall
:.l.ll ..-:-:- Ir.\.':l'" n.-..un.:u.ml B : j
Ve beri 3 B i o 1 visuial Bradie NET e - i "
Wi B
K = *]
" v "
v
= T " [=
B 1 accepi far sqrermend
3 | g s acorpk thr aprremieek
Prinr] Liceinke Radret meid]
Frads Kev
Frair Harar-
Exuninse ek Bead e Dile B Laniel lngtall

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

8. After entering the product key and your name, click the I accept the
agreement button. Click Continue to continue to the next part of
the current phase, which is selecting the features you want to install.
Figure 3.8 shows the available selections.

Figure 3.8 Selecting VS.NET Features

O Micsaiodi Yiossl Soudka RET 70 Erisigeios Seaup

Loniiesail U et ol RWET
h¥croeait”

Visual Studio.NET

TR Ot i Tneiall

foabwrn properties

Sriv e kg avslol I—_I. —— - - o =

4 T , |

' arwd i
1 A arapiegs ek |
B E?..i-- serd (e elopivend (s Pt darcsiption
i L Firgal Hpclin, ST Eelie rpraee Fodine j
I

b
e o ol e Ghips fliids griass 1-|

Brslors Brlanlls Bark Ll Pl mrd o

9. After you select the features to install, click Install Now! to start the
installation. The last phase of the installation, which is checking for ser-
vice releases, kicks in after the Visual Studio .NET installation is com-
plete. This involves checking for any service packs. Because this is a beta
release, this option is of little significance.

Installing on Windows 2000

Internet Information Server (IIS) and FrontPage Server Extensions must be pre-
sent on the Windows 2000 machine before you can install Visual Studio .NET
Beta 2. 1IS i1s installed by default on Windows 2000 Server and Advanced Server
but not on Windows 2000 Professional. So make sure that IIS is configured
before you install Visual Studio .NET on a machine running Windows 2000

Professional.
www.syngress.com

29

100

Chapter 3 ¢ Installing and Configuring VB.NET

FrontPage Server Extensions are configured on a Windows 2000 machine
only if the operating system is installed on the NTES file system.You must install
FrontPage Server extensions if the Windows 2000 operating system is installed on
a FAT16 or FAT32 file system. After making sure that the required components
are installed, insert the Visual Studio .NET Beta 2 CD to begin the installation.

The New IDE

Visual Studio .NET, like Visual Studio 6.0, lends itself to automation by exposing
a very rich programming model. The new programming model supported by
Visual Studio .NET goes beyond the extensibility model supported in Visual
Studio 6.0, which has two extensibility models. One was used to automate the
Visual Basic 6.0 environment, and the other was to automate the Visual C++
environment. Microsoft Visual Basic 6.0 extensibility model allowed the devel-
oper to automate mainly the project environment. The Visual C++ environment
allowed the developer to exploit only the document and text editor.

Visual Studio .NET not only brought together all the development environ-
ments but also added a host of objects to the extensibility model. It provides direct
access to developers and tool writers to the underlying components and events
that drive the IDE. The developer can customize the look and feel of the IDE,
enhance its functionality, and integrate the IDE with other Microsoft applications.

You can customize the Visual Studio .NET IDE in two ways: with built-in
customizations and user-defined customizations. Built-in customization takes the
form of the customizable toolbox, customizable toolbar, and so on. User-defined
customizations take the form of known features such as add-ins, wizards, macros,
and so on. These features are some of the programmable components of the IDE.
The following sections cover these components in detail.

Integrated Development
Environment Automation Model

The automation capabilities of Visual Studio .NET give the developer absolute
control of the IDE. The developer can customize the IDE to his specific needs,
automate repetitive tasks, and virtually control the way the IDE works. To enable
this flexibility, the new IDE programming model consists of numerous objects.
These objects provide direct access to various windows such as the command
window, output window, and tasklist window, as well as the code editor and the

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

tasklist events. The various objects are grouped under the following categories

depending on their functionality:

Add-in objects Add-ins are program modules that are created to
perform repetitive tasks within the IDE. Add-ins are discussed in the
following sections.

Project collection objects The Project collection objects store details
of a project that is created in the IDE. The project collection objects can
contain Visual Basic projects, C# projects, or Visual C++ projects.

Commands objects A command object represents a command in the
Visual Studio environment.

Build objects The Build objects allow a programmer to control the
build environment of Visual Studio .NET.

Events objects The Events object is responsible for providing access to
all events that are raised within the IDE. Thus, the programmer can use
this object for performing custom processing based on the occurrence of
an action.

Debugger objects The Debugger object is used to manipulate the
debugger, such as setting the next breakpoint, querying the breakpoints
hit, the status of the current program being debugged, and so on pro-
grammatically.

Properties objects The Property object is a single instance in a collec-
tion of Property objects.

Window configuration objects The Window configuration object
holds information on the layout and the way in which windows within
the IDE are configured.

Code objects The Code objects are essentially a collection of objects
that allows a programmer to manipulate the contents in the code editor.

Each of these high-level objects consists of a set of objects, collections, and

interfaces, each catering to a specific functionality. The top level Events object

contains the following objects:

BuildEvents The BuildEvents object provides events that are fired
when a solution is built.

101

www.syngress.com

102

Chapter 3 ¢ Installing and Configuring VB.NET

CommandBarEvents The CommandBarEvents object causes a click
event to occur when you click on a control in the command bar.

CommandEvents The CommandEvents object provides command
events for automation clients.

DocumentEvents The DocumentEvents objects provides events that
fire whenever an action is performed on a document. The events that are
fired are DocumentClosing event, DocumentOpened event,
DocumentOpening event, and DocumentSaved event.

Development Tool Environment (DTE) Events The DTEEvents
object provides events that are fired depending on the changes hap-
pening to the environment. The events that are fired are ModeChanged
event, OnBeginShutdown event, OnMacrosRuntimeR eset event, and
OnStartupComplete event.

FindEvents The FindEvents object fires a single event that occurs
when you do a Find operation on files. It fires the FindDone event.

OutputWindowEvents This object fires three events whenever any
change happens to the output window. The events are PaneAdded event,
PaneClearing event, and PaneUpdated event.

SelectionEvents Whenever you make changes to a selection, a single
event in the SelectionEvents object is fired. The event name is
OnChange event.

SolutionEvents The SolutionEvents object fires eight different events
when changes are made to a solution. The events are AfterClosing event,
BeforeClosing event, Opened event, ProjectAdded event,

ProjectR emoved event, ProjectR enamed event, QueryCloseSolution
event, and the Renamed event.

TaskListEvents The TaskList events object provides events that respond
to changes made to the TaskList. The events are TaskAdded event,
TaskModified event, TaskNavigated event, and TaskR emoved event.

WindowEvents The WindowEvents object provides events that are
fired when changes are made to the windows in the environment. The
events are WindowActivated event, WindowClosing event,
WindowCreated event, and WindowMoved event.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

= VBProjectEvents, CsharpProjectEvents, and VCProjectEvents
These are late-bound properties of the Events object. They are available
when a project is opened in Visual Studio .NET.

For example, you can use the BuildEvents object to do processing whenever a
build process begins or whenever a build process ends. The SolutionEvents object

provides the AfterClosing, BeforeClosing, Opened, ProjectAdded,

ProjectR emoved, ProjectR enamed, QueryCloseSolution and the Renamed
events. These events provide a flexible way for programmers to customize the
Visual Studio .NET IDE to suit their requirements.

The integration of Visual Basic into the IDE means that both Visual Basic and

Visual C++ can now use the same extensibility model. This is unlike the pre-
vious versions of Visual Studio where Visual Basic 6.0 had its own extensibility
model that neither had as many as objects nor fired as many events.

Debugging...

Exception Handling

Visual Basic .NET introduces a new type of exception handling called
structured exception handling, besides supporting unstructured excep-
tion handling. Unstructured exception handling is implemented with the
help of On Error Goto, and the new structured exception handling
involves the use of Try, Catch, and Finally statements.

Structured exception handling provides a more powerful and a
comprehensive way to handle errors. It uses a predefined construct that
allows you to code, filter errors, and perform cleanup operations. The
Try block contains code that can potentially raise errors, the Catch block
has code that will trap the exceptions, and the Finally block is the final
step in setting up an exception handler. If an error occurs in the Try block
during execution of code, Visual Basic .NET evaluates each of the Catch
statements to match the exception that was generated. If a match is
found, the control is transferred to the first line of the Catch statement
that matches this exception. If no Catch statement is found, the control
is transferred to the outer Try...Catch...Finally block, if one was pre-
sent. If no external block was found, then the control is transferred to
the calling procedure, and a matching Catch statement is searched for.
If that is also not present, then a message box containing the error is

Continued

103

www.syngress.com

104

Chapter 3 ¢ Installing and Configuring VB.NET

displayed. Alternately, you can handle errors more gracefully by speci-
fying a Catch statement without any reference to an exception. In this
case, this Catch statement becomes a generic error handler and will be
called for all unhandled exceptions. The Finally statement is the last
statement to be executed in a structured exception-handling scenario.
This block normally contains code that releases connections to
databases, closing files, and so on.

Add-Ins

The easiest way for developers to customize the development environment is to
use DTE extensions called add-ins. The term DTE extension refers to a collec-
tion of tools—such as add-ins, wizards, and so on—that extend the power of the
development environment. Add-in is the generic term for a program that is cre-
ated to perform tasks within the IDE, often in response to events. An add-in is
typically used to automate repetitive tasks and extend the functionality of the
development environment.

An add-in is a compiled application that is loaded and used by the IDE. They
can be invoked through the Add-in Manager, command window, during IDE
startup, or during the Visual Studio .NET startup from a command line. An add-
in is represented as a COM object or a .NET assembly that implements the
IDTExtensibility2 interface. The IDTExtensibility2 is an interface object that
provides five methods acting as events in a Visual Studio .NET environment.
They are fired when add-ins are loaded and unloaded in an environment, when
an environment is shut down, and so on. The five methods are as follows:

= OnAddInsUpdate Method This event is fired when an add-in is
loaded or unloaded in an environment.

= OnBeginShutdown Method This event is fired when the environ-
ment is shut down.

= OnConnection Method This event 1s fired when an add-in 1s loaded
in the environment.

= OnDisconnection Method This event is fired when the add-in is
unloaded from the environment.

= OnStartupComplete Method This event is fired when the environ-
ment is ready.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

You can create a Visual Studio .NET add-in by using Visual Basic, Visual
C++, or C#. Add-ins created using Visual Studio .NET can be hosted in a
variety of Microsoft applications.

Visual Studio .NET provides an Add-in Wizard that helps you create an add-
in template. Once created, the add-in appears in the Add-in Manager. The Add-in
can then be configured to load during startup and/or when invoked from the
command line. Exercise 3.2 lists the various steps involved in creating the add-in
using the Add-in Wizard.

Exercise 3.2 Creating an
Add-In Using the Add-In Wizard

1.

The Add-in Wizard is invoked when you choose the Visual Studio .NET
add-in template. You can find the template when you choose New
Project from the File menu and choose Extensibility projects project
type. After entering a name for the add-in and clicking OK, the Add-in
Wizard starts—Figure 3.9 shows its initial screen. The wizard collects
information from the user and creates the basic code for an add-in.

Figure 3.9 The Initial Add-In Wizard Screen

Wishoormee bo: the Ackd-in Wizard

T o] il e v et ol o - e B 00
ko, Vi DAY Pl TS e AN I PR
e mdd Pursiiorasdey oo Hha has sppdestion,

- |
Ll [FE Y
(=] | I |

You can create add-ins in any of the languages supported by Visual
Studio .NET:Visual Basic, C#, and Visual C++. Figure 3.10 prompts the
user to choose the programming language with which the add-in will
be created.

105

www.syngress.com

106 Chapter 3 ¢ Installing and Configuring VB.NET

Figure 3.10 Choosing the Programming Language
Vi Sk b Wiz Page Va6l |

ke & PO s Ll

o
Creatng Add-m i diterend progrerenieg Lenpuem B rpperted . Which Lo J-d
i o B s g o

I Creste o Bl ies Lnieg Weosal 8,
O Conale o Rt Loig Wl B
¥ Crmstw an Sad-in using ‘Sl Co4 [ATL

.| p— ==

3. Figure 3.11 lists the various hosts in which you can load the add-in. An
application host is an application that supports the execution of an add-
in. So, in this example, all of the applications listed here can execute the

add-in.

Figure 3.11 Selecting an Application Host

Visasl Soudis fedd-an Winsd [Page 7 of €]

et b A il 3 e Hirst

i
By uckd-iny o b ot o el B oo b e i reulSiple ol stors o ek, Which J-_d
ok g mepud e b gt -

Mayrgad? K e [T
Mookt sl Wl HET

Meresclt itos lmisrar

o | N T |

4. Figure 3.12 prompts the user to enter a name and a description for the
add-in. The name that you enter here appears when you click the Add-in
Manager submenu from the Tools menu.You can also type in a short
description.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3 107

Figure 3.12 Entering a Name and Description

Enber & S aied Descripiion

o
. fackd-iry reech 4 e e cleseriphicn: b betber doploy B ool br: o wper, Evibey J-d
Vs gy Lk o

Whal i the el your ddd-in?
Ill. [TTrErE——)

Ehal w the deyoription e your fdd et
Ill. T i [i

.| o | ctex s]

Figure 3.13 displays the configurable options for the add-in.You can
specify whether you want the wizard to automatically create an entry in
the Tools menu for this add-in; specify that this add-in does not have a
user-interface and can be invoked from the command-line; specify that
the add-in must be loaded whenever the IDE starts; and finally, define
the accessibility of the add-in.You can use the last option to specity
whether the add-in is available to all users or only to the user who
installs it.

Figure 3.13 Configurable Options
e T L

Chasieia fudicl-iey Dystions
d
Raie}-irs ki) J-ﬂ

o

‘Wenpid pow ke ie cregte U ke Hee ner e eeler gk wich o Sded et

T e, oot o ookl s b, By dolmll rhes sl cmse the ik 1 s s the
ket i arieee e daclchn B el T e o o o e Pacedt gl i .

e -
I Pip Bk iy mill v st e gl LI,] 2.0 v el it o e ity
I I ovmid b re dadi-an i Jead vahan e hedr aopdoser, EuL

R T v S ke
T ¥ dan whably kol uman o ih B . ok L e
parEmn ha el

| o | ot [

www.syngress.com

108 Chapter 3 ¢ Installing and Configuring VB.NET

6. Figure 3.14 shows the screen that allows you to configure the About
option for your add-in.You can use this option to display the name of
the application, the version number, and the author of the add-in.

Figure 3.14 Configuring the About Option

Chraweibreg ol Al Ik riatho. -
Wi Thordic: mopoeos by ackiing rforration o She Vot sindoss, | oo ek bn pepest J-_d
T vl e el L -

gl yray ler I grrer sl sckings b bar e g
I ez, | vacaii sty ki e S’ b indfemcstion.

Whrre L woas it e rier [z hreca supmard B v A

wIr s

un:| ool | g [T

7. Figure 3.15 shows you the last screen of the wizard. This screen merely

summarizes all the options that you have configured. Click Finish to
complete the wizard.

Figure 3.15 Summary

! d
A i e ey EPerwation elos | Broegh S st iy ciching Mineh ool J-_d
Mo’ by rely L ol e .
Four fedd in wild b fol
+ Facy s b il R

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Wizards

As shown in the preceding section, a wizard is a user assistance tool that helps to
accomplish a task that is either complex or requires experience. The wizard typi-
cally consists of a series of dialog boxes that elicit information from the user in an
organized manner. After the wizard collects all the necessary information, it goes
about completing the task by implementing a method or methods using the
information the user provides. Before you can implement a wizard, you need to
add a reference to EnvDTE assembly. The EnvDTE assembly implements a lot of
interfaces, one of which is the IDTWizard interface. The IDTWizard interface
has only one method, called the Execute method. When you create a wizard by
implementing the Execute method of the IDTWizard interface, the necessary
code to complete the task is written as part of the Execute method. The Execute
method takes in four parameters:

= A pointer to the DTE object.
= A handle to the wizard’s parent window.

= An array of parameters that allow you to specify options such as
WizardType, the directory where the solution files will be stored, the
directory where the solution will be installed, and so on.

= An array of custom parameters.

You can also create a template wizard so that it is available for future use. A
template wizard, after it is created, is added to the Add Project or the Add Item
dialog boxes.

Macros

Macros are code snippets that you can invoked through a menu or a shortcut key,
and you use them to automate repetitive tasks.Visual Studio .NET has a Macro
IDE that lets you create, debug, and execute macros. The user interface for the
Visual Studio .NET macro IDE is similar to the IDE for other development tools
except that the Project Explore, Task List, Command Window, Properties
Window, Class View, Dynamic Help, Toolbox, Object Browser and Web browser
are designed specifically for the Macros environment. The macros that you code
in the Visual Studio .NET macros IDE are written in Visual Basic .NET. Using
the Macro IDE, developers can automate routine tasks and extend the function-
ality of the IDE, such as turning line numbers off and on, stripping tab spaces,
saving and loading a view, and so on.

109

www.syngress.com

110

Chapter 3 ¢ Installing and Configuring VB.NET

The Visual Studio .NET Macro IDE also has the macro recorder that allows a
user to automatically record macros. The macro recorder records the keystrokes
when it is in the recording mode. Once recording stops, the keystrokes are trans-
lated into code and stored. This provides an excellent learning tool for novice
users. To begin the macro recording, select Macros from the Tools menu and
then select Macro Recorder.The Recorder toolbar appears on the screen. The
Recorder toolbar has buttons to pause, stop, and cancel recording. You can also
control this operation from the Macros option in the Tools menu.

After you record and store a macro, you can run it from either the Macros
IDE or the Visual Studio .NET command window.You can also place them on a
menu and run them from there. Every time you record a new macro, the macro
gets recorded as a temporary macro. This macro is not saved unless you save it
explicitly by choosing the Save Temporary Macro option in the Macros sub-
menu, which 1s under the Tools menu. The temporary macro is available until
you record the next macro or close the current session with the IDE.

Home Page

The Visual Studio .NET start page is a central location for various features. From
here you can do the following:
= Create a new project.

= See a list of recently opened projects by clicking on the Get Started
option.

» Find information about the new features in Visual Studio .NET and
check for Visual Studio .NET updates by clicking on the What’s New
option.

= Set preferences through the My Profile option.
= Get online help through the Search Online option.

= Get information on the latest happenings through the Headlines
option.

= Get detailed information on hosting your solutions through the Web
Hosting option.

= View the latest news on the MSDN online library including all

announcements related to seminars and technical presentations by
clicking on the Headlines option.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

» Interact with various developers and other experts in the field through
the Online Community option.

The start page also serves as a Web browser for the IDE.You can configure
this Web browser to be docked, hidden, or floating.

The What’s New, Online Community, and Headlines options can periodically
receive updates from the Internet. The updates are received whenever you click
on any of these options when connected to the Internet. If you are not con-
nected, the last updated information is available. You can also customize what you
see in these pages by configuring the filter that is available. For example, two fil-
ters are available to see Visual Basic—related information. The Visual Basic Related
and Visual Basic options allow you to view only information and news related to
Visual Basic. Note that the filter setting also affects what topics you view if you
have MSDN installed.

The My Profile option allows you to customize various options of the IDE.
These options set your working preferences in the IDE. The My Profile options
consist of the following configurable parameters:

= Profile The profile option is used to set the keyboard scheme and
layout of windows and to filter MSDN help. If you change either one or
all of the options mentioned in the previous paragraphs to suit your
needs, the profile option is reset to custom. If you choose Visual Basic
Developer as your profile, the corresponding keyboard scheme, window
layout, and the MSDN filter are set to those options that resemble Visual
Basic 6.0.

» Keyboard Scheme The keyboard scheme lists the various shortcut key
combinations that are available for various options such as running a
solution, debugging, turning on or turning oft breakpoints, and so on. If
Visual Basic developer was chosen as the profile, the keyboard scheme is
automatically set to the layout similar to Visual Basic 6.0. For example,
the function key F5 is used to run a project in Visual Basic. The same
key can now be used in Visual Studio .NET because the keyboard layout
is now the same as in Visual Basic 6.0.This allows you to leverage
existing knowledge and does not require you to learn new keyboard
configuration.

» Window Layout The Window Layout configuration allows you to
configure the toolbar, solution explorer, server explorer, and so on to the
layout similar to previous versions of Visual Basic or Visual C++. If you

111

www.syngress.com

112 Chapter 3 ¢ Installing and Configuring VB.NET

choose Visual Basic 6.0 as the option for Window Layout, then the IDE
places the Server Explorer window on the left of the IDE and auto-
hides it. The toolbox is docked on the left. The properties window and
Dynamic Help window are tab-docked at the bottom. The Solution
explorer and Class-view window are tab-docked on the right and on the
top of Properties window.

= Help Filter The Help filter lets you configure the topics that are rele-
vant to your scope. This feature was available in the earlier versions of
MSDN as well. Note that this option does not apply to the content
shown in the Dynamic Help window. By choosing Visual Basic or Visual
Basic Related in the Help filter, you can view all topics related to Visual
Basic documentation as well as topics relating to Visual Database tools,
source code control, and the .NET Framework Software Development
Kit (SDK).

= At Startup Show This option indicates what should appear when you
start Visual Studio .NET. The choices that you can choose from are
Visual Studio Home Page, Most Recent Solution, Open Project Dialog,
New Project Dialog, or an Empty IDE.

When you check the Open links from within the start page in a new
window, the topics or links that you view from the Visual Studio Start Page are
opened in a new window. When you click on the Get Started hyperlink, it dis-
plays the Get Started option in the Visual Studio .NET home page.

Figure 3.16 shows you the IDE after Visual Basic has been chosen as the
layout. Note the position of Server Explorer, Toolbox window, Solution explorer,
Class view, Properties, and the Dynamic Help window.

Project Options

The project options that are available in Visual Basic .NET are different from the
previous versions of Visual Basic. WebClasses and DHTML applications have been
removed and changes have been made to the Standard EXE, ActiveX EXE, and
ActiveX DLL projects.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Figure 3.16 Visual Studio .NET Start Page Configured for Visual Basic

= -l ¥ i B | » - .TT-I:'I-'!]_.-
= @ a o - T .
[P o || R B
[ipimadbirg =
==
vlly it il i
Prakir
| »]
[5 H
K E|
I.. J
ESHHE-HL’! .
g T r D= bk .
=
51 HEa | | Y. .
iy
T %o n
il ik

The list of new projects is shown when you want to create a new project or
when you want to add a new project to your existing project. A project template
is associated with each project icon that you choose. This, in turn, determines the
output type and the other project options that are available for this project. The
project types that are available in Visual Basic .NET are distinctly different from
those in Visual Basic 6.0.Table 3.2 shows the various project types available in
Visual Basic .NET.

Table 3.2 Project Templates in Visual Basic .NET

Project Type Description

A Windows Application project type is used to
create a windows-based application that has the
Windows forms as the primary tool for user inter-
face. This template creates a project with a
default form with a set of related references to
libraries present in the System namespace.

Windows Application

Continued

113

www.syngress.com

114 Chapter 3 ¢ Installing and Configuring VB.NET

Table 3.2 Continued

Project Type

Description

Windows Control Library

Class Library

ASP.NET Web Service

ASP.NET Web Application

Web Control Library

Console Application

Windows Service

A Windows control library is similar to the ActiveX
control project found in Visual Basic 6.0. The
template creates an empty container and refer-
ences the related libraries in the System name-
space. You can build the user interface for the
control, with the help of existing controls, in the
empty container. Once the controls are built, you
can use them along with the existing controls
provided by the IDE.

A project type for creating classes to use in
Windows-based applications. This template
creates a project with a default class with refer-
ences to libraries in the System namespace. The
default interface that Visual Studio .NET provides
is that of a blank screen. The user-interface is
created by dragging and dropping controls from
the toolbox.

A Web service is typically a middle-tier business
functionality that is exposed through the HTTP
protocol. This project type allows you to create a
Web service.

A Web application project is primarily used to
create Web pages that serve as the user interface.

A Web control library project is used to create
controls for Web applications. The template
creates a Web control template with default prop-
erties. You can then customize the control to your
requirements.

This project type is used to create applications
that do not have a user interface. They are
typically invoked from the command prompt. A
console application project contains a module
with only subroutine called Sub Main.

A windows service project is used for creating
services for Windows. A window service project
template consists of a blank screen similar to that
of a class library. The template also creates a
module called user services, which contains the
basic framework that will help you get started on
coding windows services.

www.syngress.com

Continued

Installing and Configuring VB.NET ¢ Chapter 3

Table 3.2 Continued

Project Type Description
New Project in Existing A wizard for creating a project in an existing
Folder folder. The wizard allows you to create an empty

project in an existing folder. The wizard queries
the user for the name of the folder in which the
project is to be created and creates an empty
project in the specified folder. You can use the
Import Folder Wizard when you already have an
existing project configured for a specific function-
ality, and you merely want import it to your
existing solution.

Empty Project An empty project for creating a Windows applica-
tion. The empty project template creates an empty
project. You can then add necessary references,
Windows forms, and other project items as neces-
sary. The difference between an Import Folder
Wizard template and an Empty Project template
is that the Empty Project template creates the
specified folder if it does not exist, whereas an
Import Folder Wizard requires that a folder be
present.

Empty Web Project An Empty Web Project template is similar to an
empty project. The only difference is that it allows
you to create a Web application instead of a local
application.

Visual Studio .NET supports a variety of file types and their related file
extensions. Visual Studio .NET uses two file types to store settings specific to
solutions. The file types are SLN and SUO. The SLN file is the Visual Studio
solution and it organizes projects, project items, and solution items into the solu-
tion by providing the environment with references to their locations on disk. The
SLN file is analogous to a Visual Basic group (VBG) file found in Visual Basic
6.0. The VBG file is created if the application contains one or more projects. It
also acts as a logical container to various miscellaneous files that are opened out-
side the project group. The SUO file contains the solution user options and stores
all of the options that are associated with the solution. This helps in restoring the
customizations each time the project is opened.

115

www.syngress.com

116 Chapter 3 ¢ Installing and Configuring VB.NET

Debugging...

Debugging Various Projects

Visual Studio .NET introduces new project types that allow you to build
applications that can take advantage of the .NET framework. The intro-
duction of these new project types also means that you can employ
some new techniques while debugging these project types. This fol-
lowing list discusses some of the project types and the procedure to
debug these project types:

» You can debug Windows Application projects by choosing
Start from the Debug menu.

» Class Library Projects are very similar to DLLs. Because DLLs are
hosted by an application, you need to debug the host applica-
tion as well. If the host application is a managed-code appli-
cation, you will be able to debug the DLL as part of the
application. But if the host application is an unmanaged-code
application, you need to attach a debugger to the process.

= Windows Controls projects are similar to class library pro-
jects. They cannot be debugged during design-time. A
Windows control is usually added to a Windows form. Once
the control is instantiated, you can set breakpoints in your
code to debug the control.

» Console Application projects have special debugging mecha-
nisms. Console application projects may require the use of
command-line parameters to start the debugger. You can
specify command-line parameters in the application’s property
pages. Once specified, these are stored with the solution.

Toolbox

The Toolbox window is organized into various tabs and contains a host of user
controls for use in Visual Studio .NET.You can open the Toolbox window by
choosing Toolbox from the View menu. The controls in the Visual Studio
NET IDE have been categorized under difterent headings. Each heading is
represented by a tab in the Toolbox window. Thus, the toolbox contains the
following tabs:

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

» Windows Form Controls
= Data Controls

= System Controls

= HTML Controls

The toolbox has the unique feature of context-sensitivity in relation to the
designer. So, if you are designing a Web form, only the HTML Controls tab is
displayed. Or, if you are designing a Windows form, only the Windows Form
controls are displayed. This reduces a lot of clutter and facilitates ease of use.

Two tabs are displayed by default when you open the IDE: the General tab and
the Clipboard Ring tab.You can customize the toolbox window by adding more
tabs. Each tab in the Toolbox window, even the ones you create, has an item called
the Pointer, indicated by an arrow that points diagonally to the left. The purpose of
this item is to return the cursor to its original state. For example, suppose you
choose to add a Listbox to a Windows form.You then changed your mind to
include a ComboBox instead of a Listbox. Because you have already selected a
Listbox, you will have to place the Listbox on the form, delete it, and then choose
the ComboBox.You can do this more efficiently by clicking on the Pointer
button. So in this situation, before placing the Listbox control on the form, click on
the Pointer button to return the cursor to its original state, and then choose the
ComboBox control. Figure 3.17 shows you the picture of a toolbox.

Figure 3.17 Toolbox Window

T - |
i

DNas

iy P =
By Fomnie

B Buion

= Chechiee

&7 Chwsckscd e

T Colaliag

74 Combolie

L] Cowvrarhl drms

) Datelad

N [wnTerePicin

@ FouPuskds

[T Dananliphios

A Fenilimlog

™ Gl

¥l HalpPucsider

wu Hi ool

= Pl

A ekl

A Leklabel

C QLY S

Lo barg =
13 el

117

www.syngress.com

118 Chapter 3 ¢ Installing and Configuring VB.NET

You can customize the appearance of the toolbox and its items by using
various methods:

Add and remove tabs In order to add a new tab, right-click on a tab
and choose Add Tab from the shortcut menu. A textbox is displayed at
the bottom of the toolbox window. Give a suitable name for the tab. The
new tab appears as the last tab in the Toolbox window. Once added, you
can use the new tab to store items. Note that the pointer item is auto-
matically added to the new Toolbox.

Add and remove items contained in the tabs Right-click on the
tab that you want to customize. Choose Customize Toolbox from the
shortcut menu. This displays a tabbed window displaying various control
classes with each class containing difterent controls. The various classes
are COM controls, Modeling shapes, General shapes, and .NET frame-
work components. Each control is displayed with a checkbox alongside
it. You can check to add a new control to the tab. If a control already
exists in the tab, the control is already checked. You can uncheck it to
remove the control from the tab.

Rename tabs and items Right-click on the tab that you want to
rename and choose Rename from the shortcut menu. Type the new
name in the textbox and press Enter.

Choose to display all tabs and hide unwanted tabs You can choose
to display all tabs or let the IDE decide which tabs to display depending
on the context. If you choose to display all tabs, right-click on any of the
tabs and choose Show All Tabs. This option toggles on or off.

Choose the type of view for items displayed in the tabs You can
choose to configure how the items on the tab are displayed. The options
that are available are Compact View and List View. In Compact View, the
items are displayed without their names. Use this option if you are
familiar with controls and can identify the control just by looking at it.
The List View option displays the controls with their associated text.. To
change the view, right-click on the tab and choose List View. This is a
toggle-on-or-oft option. If a tick mark is displayed, the current view is
that of a List View.

Sort items in the tab The items in the toolbox can be sorted alpha-
betically. You can do this by right-clicking on the items area and
choosing Sort Items Alphabetically.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Reposition the items in the tab You can reposition items displayed
in the toolbox by clicking on an item and choosing Move Up or Move
Down. The action of moving up or down depends on the view. If a
compacted view is selected, the Move Up option moves the item to the
left and the Move Down option moves the item to the right.

The toolbox normally contains the following tabs if Show All Tabs is chosen:

XSD Schema The XSD Schema tab contains items that are used
when creating schemas.

Dialog Editor The Dialog Editor contains items such as Button, text
box, list box, and so on. These items pertain to those that are normally
used in a dialog box.

Web Forms Web form controls contain controls such as hyperlink,
ImageButton, and so on.

Components The Components tab contains controls that allow access
to system operations. The following controls are part of the components
tab: FileSystemWatcher, EventLog, Directory Entry, Directory Searcher,
Message Queue, Performance Counter, Process, Schedule, Service
Controller, and Timer.

Data The Data tab contains controls that can be bound to data.You use
these when you connect to a database and retrieve data from it. Some of
the controls that are a part of the Data tab are DataSetView, DataView,
SQLConnection, ADOConnection, and so on.

Win Forms The Win Forms tab contains controls that are normally
used in Windows forms.

HTML The HTML tab contains controls that are used to format a
HTML page.

Clipboard Ring The Clipboard Ring tab is similar to the clipboard
functionality oftered by an operating system. In this case, the clipboard
ring stores code that was either cut or copied within the IDE. Each item
is stored in the Clipboard Ring tab. Once stored, you can place the
cursor in the appropriate position in the code editor window and
double-click on the appropriate item in the clipboard ring tab. So, for
example, if you have a subroutine that you frequently refer to, you can
code it for the first time and then copy it. Once copied, it 1s stored in

119

www.syngress.com

120 Chapter 3 ¢ Installing and Configuring VB.NET

the Clipboard Ring tab. Subsequently, whenever you want to reference
the procedure in code, you only have to double-click to paste it in the
code-editor window.

= General The General tab is provided to the programmer as a matter of
convenience. You can store frequently-used or user-created controls in
the General tab.

Child Windows

Visual Studio .NET contains various tools and options that allow you to con-
figure windows present in the IDE. Windows are displayed in the IDE in two
ways: Multiple Document Interface (MDI) mode and Tabbed Document mode.
In the MDI mode, the IDE provides a parent window that is a container for all
other windows. All windows that are opened are opened within the context of
this container. In the tabbed document mode, all windows are tabbed.You can
choose the appropriate document by clicking on the corresponding tab. This is
the default mode that Visual Studio .NET uses. You can configure the IDE to
choose a specific mode by choosing General under the Options submenu in
the Tools menu. Figure 3.18 shows you the IDE that uses the tabbed mode.

Figure 3.18 Tabbed Mode

Foomd. vl [Devim]| ¢

T —

Figure 3.19 shows you the IDE when it is configured to use the MDI mode
to arrange windows.

It is interesting to note the changes made to the menu items related to
arranging windows of the Window menu. When the IDE is configured to use the

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3 121

MDI mode, the menu items in the Window menu change from Tile Horizontally
and Tile Vertically to New Horizontal group and New Vertical group. Choosing
the new Horizontal or new Vertical group splits the existing screen vertically or
horizontally and places the active tab in the new pane. Figure 3.20 is an exten-
sion of Figure 3.18 after a new horizontal group is selected.

Figure 3.19 MDI Mode

[WiHemePae MIE]
Foaml. wh A=
:F_ T eamd. wh [Dasign] -

oo
I+

iR R S e s Tt e T e e

| 58

Figure 3.20 Tabbed Mode with a New Horizontal Group

L
]

lara Pags Wl | |
[¥1 Faen] Darabirm s st 1 BT

Fiimi = ki

1iHatcelompanend

= AT

Fag Sub

sl i

[- L
R e e R e e e e &
& Breim -_IIFTI

5

2

4

2

4

[} i

o

.:'.

|
www.syngress.com

122

Chapter 3 ¢ Installing and Configuring VB.NET

Window Types

The IDE consists of two types of windows:

= Tool windows

= Document windows

Tool windows are those that are listed in the View menu. They are defined by
the current application. You can configure the tool windows to show or hide
automatically, link with other tool windows, dock against the edges of the IDE,
and float over other windows.

Tool windows can be made dockable or undockable by selecting or dese-
lecting the Dockable option. Docking is a term used when two or more windows
are combined. This option is available on the shortcut menu when you right-click
on the tool window. When you make a window dockable, it floats over other win-
dows or it snaps to the side of the application window. When a tool window is in
an undocked state, it appears as a document window. A document window appears
a child window if the IDE is in a MDI mode, or it appears as a tabbed window if
the IDE is configured to use the tabbed window option. Figure 3.21 shows you
the illustration with the Toolbox window set in a docking state.

Figure 3.21 Docked Toolbox Window

Hewrs, Blass NEas Sl L
| -
|":|'ﬂl'l: E [hmofy sl | j
st Hee j
[T -
k Poma 5
e
I+ Db -
&] Dol ificm
% Dbl L i silgani .
4l 4 Cordefin _*I_I
Fomi Il Cordentbdormy
T Cradafirst
—_. e -
BE Uraedfig -

Uanand

13

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Arranging Windows

The IDE allows you to arrange tool windows and document windows in such a
way that it maximizes the viewing area.You can dock or hide tool windows, tab
dock windows, or even tile document windows.

In order to dock or hide tool windows, select Dockable from the Window
menu and drag the window toward the edge of the IDE window until you see a
superimposed outline of the window in the location you want.You can also
move the tool window without letting the window snap into its place. In order
to achieve this, press the CTRL key as you move the window. In order to hide the
window, you can right-click on the tool window and choose the Auto Hide
option. Or, if the window is already docked, you can hide the window by
clicking on the push-pin option on the window. If the push-pin is pointing
down, then the Auto Hide is disabled; if it is pointing horizontally, the Auto Hide
option is turned on.

In order to tile document windows, if the IDE is configured to use the
tabbed document mode, select a tab and drag it below or above the current doc-
ument title. A rectangular outline appears on the area in which it will be placed.
Alternatively, you can do the same by selecting the New Horizontal Group or
New Vertical Group from the Window menu. If the IDE is in the MDI mode,
you can choose the Tile Horizontally or the Tile Vertically option from the
Window menu.

Task List

The TaskList window allows you to organize and manage your development pro-
cess. You can associate this to a TODO list, which you might have to complete a
set of tasks.You can display the Task List window by selecting TaskList Window
under the Other Windows submenu on the View menu. The task list window
can help you do the following:

= Locate build and compile errors

= Mark items as completed as you complete each task

= Add user notes in the solution

» Filter task list according to the predefined views

= Sort entries in the TaskList by Priority, Category, Checked, Description,
File, or Line

123

www.syngress.com

124

Chapter 3 ¢ Installing and Configuring VB.NET

Figure 3.22 shows a sample TaskList window. The advantage of using tasks is
that you can double-click on a task that is listed in the task list window, and the
IDE directly takes you to the document and the line for editing. You can add
tasks by adding a comment in your code, followed by the token TODO:. Once
added, the corresponding task is listed in the TaskList window. You can also con-
figure the TaskList window to display a custom token.You can use a custom
token to represent a user-defined situation in a solution. For example, you might
want to add a custom token with the name FUTURE. This could represent fea-
tures of your application, which will not be implemented in the current version
but might be implemented in future versions. So, you can mark portions of code
that will be implemented in the future with this custom token. This also serves as
a reminder when this project is revised for later editions. Exercise 3.3 guides you
through the process of setting up a custom token.

Figure 3.22 TaskList Window
lask Lt 2 Palcpnsadreeniiiend =0
! e File Lrm

TODDE ot R Ll sl Hat, 'Foand obi i
T Lkl vy il 0] paddppat'all Harl, WFoand oy

Exercise 3.3 Setting Up a Custom Token

1. Click on the Tools menu and choose Options. In the Options window,
click on the Environment tab and choose the Task List option.

2. Type a name of the custom token in the textbox that is present below
the Name: caption.

3. Click on Add to add it to the list of tokens.You can also set the priority
of the token to High, Normal, or Low.

TaskList Views

You can configure the TaskList to displays tasks according to predefined views. In
order to do this, right-click on the window and choose the Show Tasks option.
This option lists various views that you can configure to view the tasks relevant
to the current situation. Table 3.3 lists the various views.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Table 3.3 TaskList Views

Category

Description

Previous View

All

Comment

User

Shortcut

Policy

Current File

The Previous View option restores the view that was in
effect before the current view. For example, if your previous
view was set to All and the current view is set to Comment,
choosing Previous View restores the view to list all tasks for
the current project.

Displays all the tasks for the current project. No filter is
applied.

The Comment view displays comments in the code that
includes the standard comment tokens and custom com-
ment tokens. Any change made to the comment token in
the form of editing or deleting has an immediate effect on
the TaskList view. You can remove a comment item from the
TaskList window by removing the comment from the code.

You can add a user task manually by entering it in the
column that has the Click here to add a new task text. These
can be checked off as completed when you complete them.

The shortcut is used to point to the code in the solution that
you frequently refer to. For example, if you have declared a
number of constants in your solution, and you frequently
refer to it, you can mark the first line where declarations
start and refer to it as you code. In order to add a TaskList
shortcut, select the line of code that you want as a shortcut.
Select Bookmark from the View menu and choose Add Task
List Shortcut from the Bookmark submenu. Once added,
the TaskList window displays the shortcut if the current view
is set to All or if the current view is set to Shortcut.

The policy view lists errors thrown by the Template
Description Language. The Template Description language is
the notation used to write the policy files of Visual Studio
Enterprise Templates. These policies define the structure of
an enterprise application. You can choose to view policy
messages by selecting Policy from the Show Tasks shortcut
menu. In order to remove the policy message from the
TaskList window, fix the problem and reopen the solution.

Lists all tasks for the file currently in view. There is a slight
difference between the All and the Current File views. The
All view shows you all views in all the files, the Current File
shows you all tasks in the current file only.

Continued

125

www.syngress.com

126

Chapter 3 ¢ Installing and Configuring VB.NET

Table 3.3 Continued

Category Description

Checked The Checked option shows you all tasks that have been
checked off as completed.

Unchecked The Unchecked view shows you all tasks that have not been
checked.

Locating Code

The IDE provides you with several options that allow you to browse through
documents to locate lines of code. These features make working with the IDE
easy, particularly when you have a solution that contains numerous files con-
taining many lines of code.You can bookmark various lines of code and navigate
through the bookmarks using the Next bookmark and Previous bookmark
commands. In addition, you can annotate code by adding a standard comment
token or a custom comment token and adding shortcuts to a line of code.You
can also scroll through the documents that have been edited in the current
session by using the Forward and Backward toolbar items.

Annotating Code

Annotating code is the process of adding user information to the code.
Annotating code usually takes the form of comments. Visual Basic .NET allows
you to annotate code by adding standard comment tokens and custom tokens,
which are listed in the TaskList window. When you double-click on a task listed
in the TaskList window, the IDE automatically takes you to the code location.
Note that comment tokens in HTML or CSS or XML markup are not displayed
in the Task List. Annotating code has various advantages:

= It makes the code more readable. But you must exercise caution here.
Too much annotation might make it look like more of a story, thus
defeating the main purpose of making the code self-describing.

= It makes it easier to view changes made to the code over a period of
time, if the programmer indicates what has been changed.

= It also helps to understand the programming logic used by a programmer.

In order to add a comment link to the TaskList window, enter the comment
marker for Visual Basic .NET, which is an apostrophe (‘). Then begin the

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

comment with one of these tokens: TODO, HACK, or UNDONE.You can then
write the comment text after this token. Once you add this to your code, the
TaskList view 1s automatically updated. If you do not see this in the TaskList
window, check out the filter settings.

You can also create custom tokens other than the default tokens of TODO,
HACK, or UNDONE. These custom token also serve as personal markers. In
order to do this, select Options from the Tools menu. Select Environment and
then choose task list. In the Comments token text field, type the name of the
token and click Add.You can also set the priority of the token to Normal,
Low, or High.

Another form of annotating code is to include shortcut to code. In order to
add a TaskList shortcut, select the line of code that you want as a shortcut. Select
Bookmark from the View menu and choose Add Task List Shortcut from
the Bookmark submenu. In order to remove the shortcut, choose the Remove
Task List Shortcut from the Bookmark submenu.

Solution Explorer

The Solution Explorer in Visual Studio .NET is the equivalent of the Project
Explorer found in the previous versions of Visual Studio. The Solution Explorer
organizes the files contained in the current solution. Figure 3.23 shows you an
illustration of the Solution Explorer.

The main purpose of a Solution Explorer is to manage files contained in a
solution. The Solution Explorer also helps you move and copy files within a solu-
tion, select multiple files to perform a single operation related to the selected
files, and assign a project in a multiple-project environment as a startup project.

The Solution Explorer provides a limited set of toolbar buttons that allow
you to perform specific operations on the object that is currently in view. For
example, if you are working on a form, the Solution Explorer will display five dif-
ferent toolbar buttons. The purpose of each toolbar button, shown in Figure 3.23,
is as follows:

= Clicking on the first toolbar button opens the code editor for the form.
This is identified by the icon with some lines in a window.

= Clicking on the second toolbar button displays the form designer. This is
identified by the icon that has two boxes in the window.

= Clicking on the third toolbar button refreshes the Solution Explorer’s
view. This is represented by two arrows following each other.

127

www.syngress.com

128 Chapter 3 ¢ Installing and Configuring VB.NET

» Clicking on the fourth toolbar button displays all the files that are con-
tained in the solution. Normally, only the forms, classes, and references
are displayed. Miscellaneous files, such as object and debug files, are not
displayed by default. This is identified by a series of small file icons.

= Clicking on the last toolbar button displays the properties for the
selected object, if a property page is available. Thus, when either a solu-
tion or a project in the solution has the focus, you can click this button
to bring up the properties for that object. This is represented by a tabbed
dialog box.

Figure 3.23 Solution Explorer

Cmo e s
M | 7] | & | 5
= . b

. pion W rdosmstppicskon 7 prosc)

0 Symiem Dondgarsien
+00 Sy O e
ril i [gt

1 S bi [L)
s 5 e e
o e o, Daesgrn,
o T L e

el it

2 Sekn Exghones | 77 (-

Solution Explorer allows the user to perform many file and project related
management tasks. Some of the most common tasks include moving and copying
items, setting up a startup project, selecting multiple items, assigning a project, in
a multiproject environment, to be a startup project, and so on.

You can perform common file operations, such as move or copy, on the files
present in the Solution Explorer. Moving and copying files, in this context,
merely refers to referencing the name of the file. So, when you click on a form
and drag it onto the code editor window and drop it, the physical path of the
form is displayed in the position it was dropped.You can perform other file
operations as follows:

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3 129

= Opening files You can open files from Solution Explorer by merely
double-clicking them.You can also change an item’s default editor by
right-clicking the item and choosing Open With... from the shortcut

menu.

= Multiple Selection You can select multiple items from a single project
or across multiple projects in a single solution. If you need perform the
same operation to a set of files, you can multiselect all these items and
perform the operation only once. For example, if you want change the
properties of two or more items or exclude only these items from the
project. Note that when you select multiple items, the commands avail-
able are the ones that are common to both the items.

= Startup Project You can set a project, in a multiproject solution, to
be a startup project. This is the same as in the previous versions of Visual
Studio. The Solution Explorer displays the name of the startup project
in bold.

Properties Window

The Properties window, shown in Figure 3.24, lets you set properties for user
controls and other objects present in the form or a designer. Note that the
Properties Window displays only design-time properties. Runtime properties are
not displayed in the Properties Window.

Figure 3.24 Properties Window

il
AighdTod i

. F i
i S]

eyl .

raig | sl Tk

e e i
L -

I oo .l |
Tead

www.syngress.com

130

Chapter 3 ¢ Installing and Configuring VB.NET

The dropdown listbox that you see on top of the Properties box lists the var-
ious controls that are on the form, including the form itself. When you select
multiple objects in a form or in a designer, the dropdown listbox does not display
anything. The properties that will be displayed are the ones that are common to
all selected objects.

The first toolbar button that you see below the listbox is the Categorized
button. This is represented by the plus and minus signs. When you click on this
button, the properties window lists all properties and its values for the selected
object after grouping it by category. Each category is a grouping of logically
related properties. For example, a Windows form’s properties can be categorized
as follows:

= Accessibility
= Appearance
= Behavior

= Data (Bindings)

= Design
= Focus
= Layout
= Misc

= Window style

The second toolbar button lists all the properties alphabetically. This is repre-
sented by the letter Z below the letter A followed by a down arrow. When you
click on this button, all properties are sorted in alphabetical order. The third
toolbar button is used to display the properties of the document. The properties
are displayed for the object that is currently selected.

Form Layout Toolbar

The form layout toolbar contains various options to align controls on the form.
This toolbar is very helpful in building an attractive user interface. Table 3.4 lists
the various toolbar buttons and their descriptions.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Table 3.4 Form Layout Buttons

Toolbar
Button Description
i Align the selected controls to the grid
I Align all the selected controls to have the same left coordinates
2 Align all the selected controls to have the same center coordinates
5 Align all the selected controls to have the same right coordinates
i Align all the selected controls to have the same top coordinates
o} Align all the selected controls to have the same middle
i coordinates
" Align all the selected controls to have the same bottom
- coordinates
"ro Make all selected controls to be of the same size
L+d
Al Make all selected controls to be of the same height
= Make all selected controls to be of the same width
Yo+
i Size selected controls to grid
= Configure selected controls to have the same horizontal spacing
e Increase the horizontal spacing between the controls
e
o Decrease the horizontal spacing between the controls
+ 4
0 Remove the horizontal spacing between the controls
+4
g Configure selected controls to have the same vertical spacing
2 Increase the vertical spacing between the controls
+

Continued

131

www.syngress.com

132

Chapter 3 ¢ Installing and Configuring VB.NET

Table 3.4 Continued

Toolbar
Button Description

|:§+ Decrease the vertical spacing between the controls
+

& Remove the vertical spacing between the controls
+

Center controls horizontally

Center controls vertically

Bring the selected control to front

Move the selected control to back

i

Hide/Show Code Elements

The code editor in Visual Studio .NET gives you the option of outlining code.
This feature reduces clutter in your code editor and allows you to see only the
current code you are working with. Outlined code is not deleted—it is merely
collapsed. You can identify outlined code by a rectangular box containing three
dots. Outlining code is an effective way to work only with relevant subroutines
or functions.

The Collapse... or Expand... option in the shortcut menu allows you to
hide or show code elements by selecting the contents of the procedure or func-
tion. If the code is collapsed, you see a rectangular box containing three dots after
the name of the function. In order to expand the code, you can either double-
click the rectangular box, click on the plus sign found in the left corner of the
code editor, or choose Expand... from the shortcut menu. In order to collapse
the code, choose the contents of the procedure or function and choose
Collapse... from the shortcut menu.

Figure 3.25 shows the part of the code editor window with some collapsed.
Note the plus sign on the margin and the ellipsis (...) at the end of the sub-
procedure. Figure 3.26 shows you the subprocedure after it has been expanded.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Figure 3.25 Code Editor with Collapsed Code

Figure 3.26 Code Editor with the Same Code, Now Expanded

Web Forms

The Web forms technology is used to create Web pages that contain program-
ming logic embedded besides code that creates the user interface. Web applica-
tions that are created using this technology can exploit the new features of
browser independence, event manipulation, and enhanced scalability, to name a
few. Another advantage of using Web forms is that various development languages
support it. Highlighted text is similar to the MSDN.

Applications built using Web forms are spread over two layers: the user-inter-
face layer and the business logic layer. The user interface consists of a Web form
containing user controls to accept input. The business logic for the Web form
consists of code that interacts with the form in the backend. The programming
logic is written in Visual Basic .NET or C#.When the form is executed, the Web
forms application dynamically produces the HTML output for your page. Web
applications built using Web forms have the following characteristics:

= The Web forms technology involves isolating all application logic to the
server. This leaves the client free to be designed so that it can run on any
browser without worrying about coding for specific browsers.

= The Web forms technology provides the facility of handling events. The
object model supports events on the client-side as well as on the server.

= The Web forms framework introduces enhanced state management. The
Web forms framework saves the state of the forms and the controls using
a state bag, session object, and an application object. A state bag is an
extensible data structure that stores various values. This is an important

133

www.syngress.com

134

Chapter 3 ¢ Installing and Configuring VB.NET

aspect because every time a page is refreshed, any form-specific values
could be lost.

= Client forms created using the Web forms framework require only the
services of a browser to run. No other component is necessary.

Intellisense

The Intellisense technology has been around for a long time. The advantage of
Intellisense is that you do not have to remember the properties and methods that
are associated with the object. In Visual Studio .NET, the Intellisense technology
has been beefed up to automatically list classes across various namespaces.

The editor provides the completion on various keywords. The editor also fil-
ters tokens with respect to the current context. For example, if you are inside a
subroutine and you type End followed by a space, the code editor quickly recog-
nizes the context and displays Sub as a member in the drop down listbox.
Another example is the usage of the Option keyword.You can use the Option
keyword with Compare, Explicit, and Strict. When you type the Option keyword
followed by a space, a listbox containing the three choices appears.

The code editor also supplies completion on Enum and Boolean keywords.
When a statement refers to a member of an enumeration, Intellisense automati-
cally displays a list of all the members in the enumeration. The same holds good
for a Boolean statement as well. When a statement refers to a Boolean,
Intellisense automatically displays true or false. Some of the options available
under Intellisense are the following:

= Member Listing Intellisense displays the list of members related to the
class or the specific namespace.

= Parameter Info The parameter info option displays a list of parameters
that are required for the subroutine or the function and the return type
if the method happens to be a function. The Intellisense feature bold-
faces the current parameter to indicate the current parameter that you
are working with. Intellisense has been upgraded to support over-
loaded functions as well. For overloaded functions, you can select which
parameter list you want to view.

= Word Completion Intellisense does a word completion when you have
entered the minimum number of characters to resolve any ambiguity.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

= Quickinfo The quickinfo feature of Intellisense displays the signature
of the function or a subprocedure. For example, if you type in msgbox
and then select the QuickInfo option from the Intellisense submenu,
the IDE displays the list of parameters that are required by the Msgbox
function. The Intellisense submenu is a part of the Edit menu.

Customizing the IDE

The Visual Studio .NET environment allows you to customize various settings to
suit your needs.You can configure the code editor, customize the start page, cus-

tomize shortcut keys, customize toolbars, and so on. All these allow you to work

more easily with the Visual Studio .NET environment.

Customizing the Code Editor

You can customize the code editor to change the settings that apply to the gen-
eral actions and view of the code editor. You can do so by setting various options
in the Text Editor folder, found under the Options submenu in the Tools
menu. The folders under Text Editor allow you to tailor the settings on a per-
language basis. You can also customize the settings in such a way that it applies to
all languages. This is done by choosing the All Languages folder.

For example, you can configure the editor to set some Visual Basic—specific
commands. You can configure the editor to automatically insert the end con-
structs. This way, if you type in an If construct and press the enter key, the End
If statement is automatically inserted.

Customizing Shortcut Keys

Shortcut keys are assigned to menu items so that they can be invoked by a com-
bination of keystrokes. This saves you time by not accessing the menu each time
you want to use a particular command. Visual Studio .NET contains various key-
board mapping schemes. These schemes represent the various shortcut key com-
binations that are specific to Visual Basic 6.0,Visual C++ 2.0,Visual C++ 6.0,
and Visual Studio 6.0. If you choose any of the predefined schemes, the appro-
priate shortcut key combination is assigned to the commands. For example, if the
Visual Studio .NET IDE is configured to use the Visual Basic 6.0 keyboard-map-
ping scheme, the Step Into option in the Build menu is assigned the F8 func-
tion key. Whereas, if you choose the Visual C++ 6.0 keyboard mapping scheme,
the same option is assigned the F11 function key. Besides the predefined keyboard

135

www.syngress.com

136

Chapter 3 ¢ Installing and Configuring VB.NET

mapping schemes, you can configure custom keyboard schemes to assign various
shortcut key combinations. A list of all available commands 1s available in a listbox
displayed below the Show Commands Containing text box.You can invoke this
option by choosing Keyboard option from the Environment tab. This window
is displayed when you choose Options from the Tools menu. Choose a com-
mand for which you want to assign a shortcut key.You can scope the shortcut
key to be applicable throughout the IDE or only to specific editor. If you choose
Global, the shortcut key is applicable to the entire IDE. Shortcut keys are a com-
bination of text key and a nontext key. The nontext keys are Ctrl, Alt, and Shift.
When assigning a shortcut key, place the cursor in the Press Shortcut Key(s)

textbox and press a nontext key and a text key. You can then click on Assign and
click OK.

Customizing the Toolbars

You can configure the toolbars to suit to your requirements. You can move the
toolbar to new location by clicking and dragging it. You can also create a new
toolbar, add new commands, or remove existing commands from a toolbar.
Exercise 3.4 allows you to add a new toolbar to the existing set of predefined
toolbars. Once added, the new toolbar is available for use just as any other pre-
existing toolbar is.

Exercise 3.4 Adding a New
Toolbar to the Existing Set

1. Choose the Customize submenu from the Tools menu, or right-click
on the menu bar and choose Customize from the shortcut menu.

2. The Customize window has three tabs, which represent the Toolbars,
Commands, and Options. The Toolbars tab displays the list of default
toolbars provided by Visual Studio .NET along with a checkbox.You
can select a toolbar by checking the appropriate checkbox.You can

create a new toolbar by clicking on the New... button available in the
Toolbars tab.

3. After you click the New... button, a dialog box appears prompting the
user to type a name for the toolbar. After typing the name of the new
toolbar, click OK to dismiss the dialog box. The newly added toolbar is
selected by default and is added to the list of existing toolbars. The new
toolbar is displayed as a floating toolbar in the IDE.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

You can also add commands to the existing toolbars. For example, you might
want to add debugging commands to the standard toolbar. Exercise 3.5 outlines
the procedures for adding commands to the existing toolbar.

Exercise 3.5 Adding Commands to Toolbars

1. Choose the Customize submenu from the Tools menu, or right-click
on the menu bar and choose Customize from the shortcut menu.

2. Select the Commands tab from the Customize dialog box.The
Commands tab contains two listboxes that displays various categories of
commands and the commands available in each category.

3. Choose the appropriate category from the Categories listbox relevant to
the task that you want to accomplish. The Commands listbox 1s auto-
matically updated to reflect the relevant commands available in the
selected category.

4. Click on the specific command that you want to assign to the new
toolbar and drag and drop it onto the new toolbar.

Customizing Built-In Commands

You can program Visual Studio commands in such a way that you can invoke
them from the command window. These are the actual commands that are exe-
cuted when you choose an option from the menu. For example, if you want to
open a new project, select the File menu, choose New... from the submenu, and
choose Project. The Visual Studio .NET IDE has commands built in for each of
the menu items. So, in this case, the IDE executes the following command to
actually accomplish the operation:

File. NewFil e

You can accomplish the same operation by opening the command window and
typing this command at the command prompt. In other words, the IDE has encap-
sulated a host of commands and provided the menu as the user-interface object.
This also means that the IDE hosts a lot of other commands that have not been
coded as items in the menu. Table 3.5 lists some of the unadvertised commands.

137

www.syngress.com

138 Chapter 3 ¢ Installing and Configuring VB.NET

Table 3.5 Unadvertised Commands

Visual Studio .NET
Built-In Command Description

File.AdvanceSaveOptions The advanced save options allows you to set the
encoding format and also allows you to con-
figure line endings. Line endings differ for var-
ious operating systems. In Windows, line endings
are denoted by a carriage return and a line feed,
whereas in Unix it is denoted only by a linefeed.

Edit.DeleteToEOL Deletes the current line fully from the current
cursor position to the end of line.

Edit.DeleteToBOL Deletes the current line fully from the current
cursor position to the beginning of line.

Edit.DocumentStart Moves the cursor to the beginning of the
document.

Edit.DocumentEnd Moves the cursor to the end of the document.

Creating an alias helps you avoid typing a lengthy command. So, every time
you invoke the specific command, type in the name of the alias and press Enter
to invoke a command. The alias command helps you to create an alias for a com-
mand. The syntax for the alias command is as follows:

Al i as <custom nane> <comuand>

Exercise 3.6 shows this process.

Exercise 3.6 Creating an Alias

1. In the command window, specify the alias command according to the
syntax by providing a custom name and the actual command that you
want to alias. The Intellisense features kicks in as soon as you provide the
custom alias, indicating the available commands that you can alias. For
example, the following statement creates a custom alias to run the pro-
ject (the appropriate Visual Studio command is Debug.Start):

>al i as RunProj Debug. Start

2. After you enter the command, press Enter to create the command. The
status bar displays a message that the command is created.

3. The following command deletes an alias.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

>alias RunProj /delete

You can also list the currently stored aliases by typing the alias com-
mand. The alias command without any additional parameters lists the
currently configured aliases. You can also view the definition for a single
alias by typing the alias followed by the custom alias name.You can clear
the command window by typing cls. The alias cls is a custom alias for
the command Edit.ClearAll

Customizing the Start Page

Visual Studio .NET allows the programmer to customize the start page to

include any information that is of interest to the programmer. However, you must

complete a few prerequisites before the customizations can take effect. The pre-

requisites are the following:

Make sure that a folder called Custom is present under <Microsoft Visual
Studio. NET root folder>\Common7\IDE\HTML\StartPageTabs\1033.
The Microsoft Visual Studio .NET root folder is the folder where you
have installed Microsoft Visual Studio .NET. This is normally under the
Program Files folder, which is located on the C drive. So, if you had
installed Microsoft Visual Studio .NET under C:\ProgramFiles, the
Custom folder must be created under C:\Program Files\Microsoft Visual
Studio. NET\Common7\IDE\HTML\StartPageTabs\1033 folder.

The content presented in the start page is actually a collection of XML
files that adhere to specific XDR (XML Data-Reduced) schema. As
long as the file that you create complies with the schema, the content is
sure to be displayed on the start page. The .XDR file is located in
<Microsoft Visual Studio .NE'T root folder>\Common7\IDE\HTML\
1033.You can then create the XML file containing the required content
and save it in under <Microsoft Visual Studio .NE'T root folder>\
Common7\IDE\HTMLA\StartPageTabs\1033. Once this is done, you
can refresh the start page if the IDE is already open or open the IDE to
view the newly created link.

The following code segment shows you how to customize the start
page that contains links to external Web sites:

<?xm version="1.0" encodi ng="UTF-8"?>

<Tab Name="Tech Links" |ID="vs_techlinks">

139

www.syngress.com

140 Chapter 3 ¢ Installing and Configuring VB.NET

<Application Links" |D="vs_techlinks.app">

<Pane | D="Mai nPane" >

<Title>External .NET Resources</Title>

<HRul e/ >

<LI t emEx>

<Lltem URL="http://ww. m crosoft.conm net">Mcrosoft's .NET
site</Lltenp

</ LI t enEx>

</ Pane>

</ Appl i cati on>

</ Tab>

The <Tab> element identifies a tab in the start page. In this case, the
tab 1s titled Tech Links. The ID attribute is used to differentiate one tab
from another. One of the child elements of the <Tab> element is the
<Application> element. The <Application > element identifies the con-
tent that is contained in the tab. The ID attribute serves the same pur-
pose as before. The right-hand side of the start page is called a pane and
1s associated with a <Pane> element. The <Title> child element is used
to specify a title for the pane. The <HRule/> element is used for the
purposes of formatting. The <LIfemEx> is group element that contains a
list of <LItem> elements. The <LIfems> elements are used when you
want to specify links. Because we are trying to link to external sites, we
use the <Lltems> elements.

This is a very basic example that shows you how to customize a start
page. Further enhancements are limited only by the creativity of the indi-
vidual and the support provided by the schema. Figure 3.27 shows you
the IDE with the start page configured with the help of the XML file.

www.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3

Figure 3.27 Customized Start Page

iy wivial | L il | orm it iy el i] i

Latdraal MU Fidadicei

Accessibility Options
The Accessibility options available in Visual Studio .NET allows users to work
with ease. The user interface can be configured in the following ways:

= Increasing the text size of code and menu options

= Changing the color of toolbar items, window text, and so on to make it
more bright or dark depending on the requirement

= Changing the size of icons present in the toolbars to large icons

= Making the toolbars buttons more accessible by assigning text to the
corresponding toolbars buttons

= Assigning shortcut key combinations to facilitate entry of frequently
used text or graphics

141

www.syngress.com

142 Chapter 3 ¢ Installing and Configuring VB.NET

Summary

Visual Studio .NET is available in three different versions: Academic, Professional,
and Enterprise editions. You can install Visual Studio .NET on all Microsoft
Windows operating systems except on Windows 95.Visual Studio .NET IDE pro-
vides a new and a comprehensive extensibility model to automate its environment.
The IDE now hosts Visual Basic,Visual C++, and the new programming language
C#.Visual Basic .NET and Visual C++ share the same extensibility model.
‘k Visual Studio .NET allows a programmer to work with difterent objects, such
as add-ins, wizards, and macros. You can create a Visual Studio .NET add-in using
Visual Basic,Visual C++ or C#. A wizard is a user-interface object that helps the
user complete a complex or difficult task. A macro is a collection of code snippets
that you can invoke with a combination of keys. The Visual Studio .NET start
page is a central location for various features provided by the IDE.You can cus-
tomize the Visual Studio .NET home page to your requirements by creating an
XML page containing user-specific content.Visual Basic .NET introduces new
project templates that outrun the options provided by the earlier versions of
Visual Studio. A toolbox window contains various tabs that contain Visual Basic
controls. Visual Studio .NET introduces the task list, which allows you to track
the compiler errors, syntax errors, and upgrade errors. Custom tokens allow you
to configure the task list to your requirements. The code editor offers the
expand/collapse feature.Visual Studio .NET also introduces a new technology
called Web forms that allows creation of Web pages that can respond to events.

o

Solutions Fast Track

Editions
i 4 M Visual Studio .NET Beta2 currently is available only in what will be
released as the Professional format. Microsoft plans on releasing
Enterprise Developer and Enterprise Architect versions soon.

Installing Visual Studio .NET

M You can install Visual Studio .NET on Windows 2000 and NT 4.0.You
can’t install it on Windows 95, 98, or ME, although for code execution
Windows 98 and higher will be supported.

WWW.syngress.com

Installing and Configuring VB.NET ¢ Chapter 3 143

M Visual Studio .NET and Visual Studio 6.0 can co-exist on the
same machine.

The New IDE

M Visual Studio .NET IDE introduces a new extensibility model.
M All development tools are included in the IDE.

Customizing the IDE

M You can configure the IDE to suit the development tool that you '
are using. .

M Dynamic help displays help that is context sensitive.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: CanVisual Studio .NET and Visual Studio 6.0 co-exist on the same machine?

A: Yes, they can. But please be advised that Visual Studio .NET is in beta stages
and you should not install.it on development boxes.

: Does this version of Visual Studio .NET work on Windows 95?

: No, it does not work on Windows 95.

: Can I develop Web applications using Visual Studio .NET on Windows 98?

>0 P> O

: No.You can develop Web applications only 1f Visual Studio .NET is installed
on Windows NT 4.0 or Windows 2000. Besides, you also need the Internet
Information Server installed.

WWW.syngress.com

Chapter 4

Common Language

Runtime

Solutions in this chapter:

Component Architecture

Managed Code versus Unmanaged Code

- System Namespace

Common Type System

Garbage Collection

M Summary
M Solutions Fast Track

M Frequently Asked Questions

145

146

Chapter 4 * Common Language Runtime

Introduction

As part of the .NET Framework, all .NET applications will execute using the
same runtime environment. This is referred to as the Common Language
Runtime (CLR). It is the driving force behind putting Visual Basic on the same
footing as Visual C++, for example, as a powerful object-oriented language. The
CLR will improve performance and ease the usage of components created in dif-
ferent languages via cross-language integration.

The CLR controls or manages the execution of a program. When you
develop code using VB.NET, the code will be compiled for use under the control
of the CLR.This is called managed code. This allows your code to take full advan-
tage of the .NET Framework. If you develop code with previous versions of
Visual Basic, you will create unmanaged code. It will not be able to utilize the
power and benefits that the CLR brings.

The CLR (see Figure 4.1) is the heart of the .NET platform. The CLR ofters
such a radical change from the old runtimes, it is no wonder that .NET is often
referred to as a revolution, and not an evolution, of the current Visual Studio
development platform. It introduces a whole slew of new and exciting features
for developers. In this chapter, we discuss some of the fantastic features of the
NET platform and the vital role the CLR plays in implementing them,
including the following:

= Component architecture

= Managed code versus unmanaged code
= System namespace

= Common Type System

= Garbage collection

Every object is now inherited from within a common entity known as the
System namespace and specifically, the System.Object class. This is the base founda-
tion for all of your objects. Almost all of your system functionality is now
included in the System namespace. This will ease development because you won'’t
have to go digging through documentation looking for the correct Windows API
call to perform a task. All tasks will be available from within the System name-
space. The System namespace also contains data types. This feature allows a
common type system for all languages, which gives a standard for passing data
between components developed in diftferent languages. We’re sure most of you

www.syngress.com

Common Language Runtime * Chapter 4

have had the wonderful experience of passing data with the Windows API or a
COM component written in Visual C++.

Figure 4.1 The Common Language Runtime

Common Type System

= Provides support for types and operations on those types

Metadata

= Describes and references the types defined by the (TS
= Provides the common interchange mechanism

Virtual Execution System
= Loads and runs programs written for the (LR
= Uses metadata fo execute managed code

= Performs services such as garbage collection

Objects will be handled difterently in .NET than what you are used to.You
will notice difterences in how they are allocated and deallocated. A glaring
change is the absence of reference counters, which removes the need for the
AddRef and Release mechanisms of COM objects and allows components to use
less memory and load faster. This is accomplished with the Garbage Collector,
which monitors the objects and determines when they are no longer needed and
releases them automatically, thereby eliminating the circular reference problem.

Components written in .NET will have many advantages over COM com-
ponents. One of a programmer’s biggest headaches will be alleviated. You will no
longer have to register your components in the Registry. You will also be able to
utilize different versions of the same COM component on the same machine.
However, you will still need to use COM components—they will not disappear
overnight. COM Services will allow you to access COM components from
within your .NET applications.

www.syngress.com

147

148

Chapter 4 * Common Language Runtime

Component Architecture

One of the most powerful capabilities that we have come to love about Visual Basic
is the capability to easily create components. Reusable code in the form of dis-
tributable binaries has been a key player in the success of Visual Basic to date. It has
allowed programmers to reduce code redundancy, increase productivity, and provide
more scalable applications. Luckily, Microsoft is well aware of the success compo-
nent development has brought to its league of programmers and has only enhanced
what component development offers in their new component architecture.

Clearly, the new object-oriented features of VB.NET will be quickly
embraced in the design of components. The capability to provide constructors,
inheritance, overriding, and overloading gives VB developers a real step up in
code reuse and extensibility (not to mention bragging rights that we are a frue
OO language now, as well). This tends to go without saying. In addition, how-
ever, one of the key benefits of designing components under the new .NET plat-
form is that we are finally escaping from DLL Hell.Yes, that’s right! No more
versioning problems, confusion over which compatibility to set when compiling,
registering and unregistering of components, and just general headaches causing
keep-you-up-til-dawn deployment issues. Those days are over, and we recom-
mend you close the door on them. But do not lock it and toss the key just yet.
COM is not dead by any means, and we discuss later in the chapter how .NET
can communicate with your existing COM objects. With that said, you may be
wondering how this is all possible.

Components created under the .NET platform are compiled into executables
called assemblies, which serve as the building blocks of all .NET applications.
Assemblies are reusable, versionable, self-describing entities that alleviate the
deployment and maintenance problems often encountered with COM. Each
assembly contains an assembly manifest, which is the name given to the self-
describing information located therein. This makes perfect logical sense. Why store
information about a component outside of the component—as was the case with
COM utilizing the registry, type libraries, and so on—when the information can
be self-contained. Keeping everything in one central package makes it clear where
information will be located and where you need to go to find it. The assembly
manifest contains the following information describing the assembly itself:

= Assembly’s identity Its name and version number.

= File table Describes any other files that make up the assembly,
including other assemblies, graphics files, text files, and so on (these

www.syngress.com

Common Language Runtime * Chapter 4

other file types included can be correlated to items you might have
included in resource files used in previous versions of Visual Basic).

= Assembly reference Lists all external dependencies, such as DLLs and
other files that your assembly depends on to execute, but that you did
not create yourself.

The CLR can use the information contained within the assemblies at run-
time to determine what dependencies the application may have and where to
look for those dependencies.

In addition to alleviating the problems encountered with versioning and
maintaining compatibility, the CLR provides another huge revolution to the idea
of component scalability and increased productivity via true language interoper-
ability. Originally, COM was created to allow for a standard by which its com-
piled binaries could be language neutral and used in any other language that
understood—and could implement—COM. COM had defined a standard for
defining interfaces to describe components that allowed for language interoper-
ability...so they said. If you have ever wanted to call a Visual Basic ActiveX DLL
from a C++ client application, you know that doing so really isn’t all that simple.
You would need to go into the IDL code for the component and do a little
reworking to generate a type library that could be used and understood by the
calling application.

So it works, sort of. However many of you out may have often thought,
“Can’t this be done more efficiently? There has to be an easier way.” Well, either
Microsoft has a team of mind readers, or they themselves thought the same thing.
Regardless of how true language interoperability came about, we can now rejoice
that it has. The CLR offers a cross-language integration scheme that cannot be
matched, and a big player behind this integration is the introduction of metadata.

Metadata is essentially binary information that describes just about every
aspect of your code. It contains information about every type defined and refer-
enced within your code and assemblies. Therefore, at execution time, the CLR
can extract this information, store it into memory, and, thus, reference this
memory at any time to determine information about your classes, defined types,
which classes are inherited from whom, and so on.The big plus in all of this is
that previously, information about the syntax of components, or their interfaces,
was the only thing stored. Metadata allows the semantics, or meanings, of these
interfaces to be stored. By ensuring that this kind of information is made avail-
able to the runtime, you can maintain type compatibility between languages,
object management, and all aspects for implementing cross-language integration.

149

www.syngress.com

150

Chapter 4 * Common Language Runtime

Now, all the code that runs within the CLR is called managed code, and it is
this concept that allows for true language interoperability. Okay, so what does this
all mean already? Take our earlier scenario where a C++ coder wanted to use the
capabilities of a pre-existing Visual Basic component. We have noted that it wasn’t
a simple matter of setting a reference and then being able to use the component.
Under .NET, all the languages producing managed code can interoperate with
one another. For example, you write a class in Visual Basic that a C++ coder can
then inherit in his own class. Say a C# programmer on your development team
has created a fully functional assembly, which you need to be able to use on your
portion of the project. No problem, simply import the namespaces you want
from it and start working with the classes it defines. It’s just that simple. In a
world where there is growing diversity in technology and growing diversity in
technical skill sets, the .NET platform and its CLR create an embodiment of
uniformity that allows developers from varying backgrounds to come together
and work side by side in a seamless environment.

Managed Code versus Unmanaged Code

By now you have probably seen the term managed code thrown around as part of
the new .NET lingo. Simply put, managed code is code that runs within the
CLR, or rather, is managed by the CLR. All languages targeting to run in .NET
will produce managed code that will run under control of the CLR.Visual Basic,
C++, and C# code will all be managed by one runtime, which does away with
the multiple runtimes required previously (depending on which language you
developed with). Now you can develop your applications using multiple lan-
guages and have to worry only about distributing a single runtime to manage all
of that code. This managed code gives the CLR the information it needs to pro-
vide many of its core services. When we talk about the benefits of managed code,
we are, essentially, also speaking about the benefits of the CLR and the .NET
platform as a whole.

So what does this really mean to you as a developer? We still have a runtime,
right? Was there anything really wrong with the previous VB runtime (other than
it being a bit bloated)? To answer this question, let’s look at a fictitious analogy to
demonstrate the benefits of having this global commonality. Suppose that a
trucking agency delivers large shaped objects in the form of triangles, squares, and
rectangles. They have built trailers shaped the same size as each of these large
objects for transportation. A triangular trailer ships the triangles, a square trailer
ships the squares, and a rectangular trailer ships the rectangles. Imagine that they

www.syngress.com

Common Language Runtime * Chapter 4

experience a sudden increase in demand for triangles, but they don’t have enough
trucks to deliver them. Unfortunately, the triangles do not fit in either the square
or rectangular trailers, so the trucking agency is unable to keep up with the
demand. Now imagine a new shape, the hexagon, is created. The trucking agency
must develop new trailers to accommodate this new object because none of the
previous trailers can carry it.

Ok, so what does this have to do with managed code under a common run-
time, namely the CLR? The CLR provides a common ground for all languages
targeting the .NET platform. It can be thought of as a large spherical trailer that
can carry any of the other shapes in our analogy. VB, C++, and C# can all be
managed by the same runtime. In fact, any language targeting to run under the
NET platform will be managed by the CLR. A new language can be con-
structed for inclusion into .NET, and the runtime is unchanged. This gives the
platform extensibility that did not exist in previous versions of Visual Studio.

A key to all of this arises from the fact that the CLR provides an Execution
Engine that creates what is known as the Virtual Execution System (VES).The
VES is essentially what handles and maintains all of this managed code. The VES
loads managed code at runtime, and by inspecting the metadata of that code, per-
forms all of the wonderful tasks that make .NET so fun and easy to use. Some of
the more important tasks that the VES performs are the following:

= Converting MSIL code into native code
= Garbage collection

= Security services

= Profiling and debugging services

s Thread management and remoting

With the structured, self-describing information stored in the metadata, and
an execution system that can use that information, we now have a simple model
for language interoperability. All languages that produce managed code can com-
municate with other languages that also produce managed code. Now, you may
be saying, “Yes, but other languages—via binaries such as COM—could already
use code in different languages.” This is true, but as we have noted previously, the
process is neither as simple, nor as intuitive, as it is under .NET. Inheriting from a
class written in C# from Visual Basic will appear no difterent than if the inherited
base class had been written in Visual Basic itself.

151

www.syngress.com

152

Chapter 4 * Common Language Runtime

After all of this talk about managed code, it seems rather intuitive that corre-
sponding unmanaged code must exist. Indeed, it does. Whether you know it or
not, you are already very familiar with unmanaged code. All the code you have
written prior to .NET is referred to as unmanaged. Essentially, unmanaged code is
simply a term referring to code that is not managed, and thus, is not targeted to
be under the control of the CLR.

As we have mentioned, all code you have written to this point has been
unmanaged (in the sense that it is not managed by the CLR, but it is obviously
being managed by something). Under .NET, you can’t write unmanaged code
except with C++.The only type of code you can create with VB.NET and C#
1s managed code.

Unmanaged code does not benefit from all of the great features that are
accessible with managed code.You lose seamless language interoperability, as well
as the other features the CLR provides for you under .NET, such as automatic
memory management via Garbage Collection (more on this in the Garbage
Collection section). But, you have been living without these features for some
time now and getting by just fine. Hopefully by now, however, you are beginning
to see the true power and potential that the new .NET platform will be offering
you as a developer.

You're asking yourself, “What about all of the unmanaged code we developed
under COM? Surely we aren’t expected to port all of this perfectly functioning
code over to .NET to be able to utilize it.” Have no fear, your assumption is cor-
rect. Microsoft has provided the runtime with a pair of wrapper classes to allow
managed and unmanaged entities to work with one another seamlessly. The client
will think they are calling the object within their own respective environment
regardless of where the object actually originated. Let’s take a brief look at how
this works.

Interoperability with Managed Code

Managed code and unmanaged code may want to communicate with each other
in two different ways. For example, either a .NET client will want to call upon a
method of a COM object, or a COM client will want to call upon a method of
a .NET object. Each case uses a different wrapper class to handle the communi-
cation between the managed and unmanaged objects. These are referred to in
NET as COM Interop wrappers.

When a .NET client wants to talk to a COM object, the runtime creates a
Runtime Callable Wrapper (RCW).The RCW is responsible for resolving the

www.syngress.com

Common Language Runtime * Chapter 4

differences between the managed .NET client and the unmanaged COM server.
The RCW acts as a proxy that marshals calls between the client and server. In
essence, the RCW is a translator, which can convert method calls and return
types unfamiliar to the client or server into something they can understand. For
example, the .NET client may send across a value of type String (which is now
an Object in .NET, as is everything else), which the RCW would interpret and
translate into a BSTR type for the COM server to understand, and vice versa.

When the roles are reversed, and a COM client wants to call a .NET server
object, then the runtime creates a COM Callable Wrapper (CCW).The CCW
functions similarly to the RCW except that it marshals method calls and values
going the other direction.You can think of a RCW as a Spanish to English trans-
lator whereas a CCW is a English to Spanish translator. They perform comple-
mentary roles to ensure proper communication between two entities in both
directions: sending and receiving.

In addition, Microsoft’s push to COM+ since the release of Windows 2000
was a foreshadowing of their .NET initiative. COM+ was created with .NET in
mind (or maybe it was the other way around). At any rate, COM+ will still pro-
vide the services we have come to depend on for providing things such as trans-
action support, object pooling, and queuing. Managed components and
unmanaged components will both be able to happily coexist under the services
provided by COM+, and they will have the capability to communicate seamlessly
via the automatic creation and implementation of the callable wrappers.

System Namespace

Although all of that general technical stuff discussed previously is important, most
developers are interested in the language itself. We keep referring to all of these
new features and benefits that VB.NET brings to us, so let’s take a look at some
of these features and begin to familiarize ourselves with the changes the new
platform introduces into our programs code-wise.

It has been stated before and we state it again here: Everything in VB.NET is
an Object. For anyone who has ever had some exposure to Java, the concepts
presented herein will strike a nerve of familiarity. In VB.NET, Microsoft has
introduced the idea of namespaces. Namespaces organize all of the objects that
are defined within an assembly. The assembly can contain multiple namespaces,
which in turn can contain other namespaces. Under VB.NET, all objects derive
from the System namespace (see Figure 4.2). The System namespace
contains all the fundamental classes that define most of the common data types,

153

www.syngress.com

154 Chapter 4 * Common Language Runtime

events, interfaces, and exceptions. All other objects derive from the System.Object
class, which implements all of these base features. Any classes you write will also
depend on the System.Object class, which you will extend to provide the func-
tionality you want your class to offer. This results in a hierarchical structure of
object inheritance that clearly defines the true object-oriented nature of the
NET platform. Another huge bonus is the fact that a lot of those hard-to-use,
messy API calls have been replaced with more intuitive objects complete with
properties and method calls. Let’s take a look at some common subcomponents
of the System namespace that you may be using when writing code under the
NET platform and see how this new framework replaces the independent func-
tions you are accustomed to working with.

Figure 4.2 System Namespace

Contains Object class and Namespaces shown
helow as well as many others

System,Obied Closs SYSTEM.DRAWING
NAMESPACE

GefType() As Type
ToString() As String

Finalize() Graphics Class
efc... Other Classes
and
Namespaces
All Other Classes Under .NET SYSTEM.10 NAMESPACE
Method 1) FileStream Class StreamReader Class
Other Classes

Method2(...)

efc...

www.syngress.com

Common Language Runtime * Chapter 4 155

File I/0

Probably one of the most familiar tasks for Visual Basic developers is simple file
[/0. Reading and writing to a file is something we have all done a lot of for a
multitude of purposes. Under VB.NET, file I/O is encapsulated in the System.IO
namespace. Let’s take a look at a simple example of reading from a file with
VB.NET. To make the example clearer, we first look at the code in current
versions of Visual Basic, and then we compare it to how it might look under
NET. This example simply opens a file for reading, reads in a single line, and dis-
plays it in a message box to the user:

Sub Mai n()
Dim sBuff As String

Open "C:\Tenp\ Sanpl e.txt" For |nput As #1
Li ne Input #1, sBuff
MsgBox sBuf f
Cl ose #1
End Sub

Simple enough. Now let’s take a look at its VB.NET equivalent:

I mports System 1O

Modul e Test Mod
Sub Mai n()
DimoFile As FileStream = New FileStream _
("C:\Temp\ Sanpl e. txt", FileMde. Open, Fil eAccess. Read)

Dim oStream As StreanReader = New StreanReader (oFil e)
MsgBox(oSt r eam ReadLi ne)

oFile.d ose()
oSt ream C ose()
End Sub
End Modul e

www.syngress.com

156

Chapter 4 * Common Language Runtime

The first order of business here is the importing of the System.IO namespace.
VB.NET uses the Imports statement to include namespaces that contain classes
you will want to utilize in your code. Within the System.IO namespace are the
two classes we are using in the example, namely FileStream and StreamR eader.
The FileStream class allows us to open a stream to a file, and the StreamReader
class allows us to read from that stream. Notice the capability to declare and ini-
tialize an object using its constructor all on the same line. This is another won-
derful convenience introduced into Visual Basic under .NET. This example
should give you confidence knowing that the logic necessary to work with files
has not changed, only its syntax has, which you will become familiar with once
you get started coding with it on a regular basis.

Drawing

Anyone who has ever done heavy, intensive graphics work with the Graphics
Design Interface (GDI) Windows API in current versions of Visual Basic knows
that it is not the most fun, nor the easiest, code to work with and manage. This is
a perfect example of where the .NET platform has done a terrific job of encap-
sulating difticult to learn/read/use API functions into more comprehensive,
reusable objects. Classes for working with graphics have been included in the
System.Drawing namespace. The new functions provided in this namespace have
often been referred to as the GDI+ functions. The Graphics class in the
System.Drawing namespace is where most of the magic happens. For example, in
a simple WinForms application, you could draw a blue line on your form using

code like this:
Protected Sub btnDrawLi ne_Cdick(ByVal sender As hject,
ByVal e As System Event Args)

Dm G As Graphics = Me. Creat eG aphi cs()
G DrawLi ne(New Pen(Col or. Bl ue), New Point(10, 10),
New Poi nt (50, 50))

End Sub

Or you could draw a curved red line connecting several points:

Protected Sub btnDrawCurve_d i ck(ByVal sender As bject,
ByVal e As System Event Args)

Dim G As Graphics = Me. Creat eG aphi cs()

www.syngress.com

Common Language Runtime * Chapter 4

Dim pts(3) As Point

pts(0).X = 10
pts(0).Y = 10
pts(1l).X = 40
pts(1).Y = 40
pts(2).X = 70
pts(2).Y = 50
G DrawCur ve(New Pen(Col or. Red), pts)
End Sub

Working with graphics is just that easy. Although you have a lot of new
syntax changes to digest, they all share the common property of working with
objects. This sort of commonality will only speed the process of familiarizing
yourself with the new look and feel of Visual Basic.

Printing

The familiar Printer object has been replaced by the System.Drawing.Printing
namespace. Recall earlier we mentioned that a namespace can contain other
namespaces. Well, here is an example. The System.Drawing.Printing namespace is
contained within the System.Drawing namespace, which we discussed in the pre-
ceding section. Here is a small example showing how you might print a simple
text string to the printer:

I mports System Draw ng

I mports System Draw ng. Printing

Modul e Test Mod
Private WthEvents oPrint As PrintDocunent

Sub Mai n()
Try
"instantiate PrintDocument object and call Print nethod
oPrint = New PrintDocunent ()
oPrint.Print()
Catch e As Exception
MsgBox("Error printing file: " & e.ToString)

157

www.syngress.com

158

Chapter 4 * Common Language Runtime

End Try
End Sub

Public Sub oPrint_PrintPage(ByVal sender As bject,
ByVal e As System Drawi ng. Printing. PrintPageEvent Args)
Handl es oPrint. Print Page

"this event fires for each page printed
"you will handle all printing |logic here
Try
e.Gaphics.Drawstring("Print test", New Font("Arial", 10),
New Sol i dBrush(Col or. Bl ack), 100, 100)
Catch ex As Exception
MsgBox("Error: " & e.ToString)

End Try
End Sub
End Modul e

In this example, you are also getting a glimpse of structured error handling
provided in VB.NET. You might think that this is a lot of code to simply output a
single line to the printer, but the extra work required here is well worth the ben-
efits gained when you move to implementing more complex printing schemes.
Anyone who has ever struggled with providing rich and powerful printing capa-
bilities for their applications is going to love the functionality included within
this namespace. Carried over from the Printer object are the basic properties for
setting paper type, paper size, and so on. Two exciting new features are the capa-
bility to receive events from your print job, such as when the printing begins and
ends, and to provide full print preview capabilities.

Common Type System

We have already talked a bit about CLR’s cross-language integration capabilities.
Several parts help make up this seamless environment. One of the most important
parts, if not the most important, is the Common Type System (CTS).The entire
NET framework is built on this type system that the CLR defines. We take a

www.syngress.com

Common Language Runtime * Chapter 4

moment here to discuss why this component of the CLR is so important for
ensuring proper language interoperability.

We briefly mentioned the CTS—also referred to as the Universal Type
System—earlier when we discussed the capability of interoperability between
managed and unmanaged code. The COM Callable Wrapper (CCW) was respon-
sible for ensuring that types transterred by the COM object be translated into a
type supported by the CLR.The CTS describes these types supported by the
runtime, and how those types can interact with one another. Simply put, a type is
a semantic definition describing an entity that can accept certain values and cer-
tain operations on those values.

Previously, each language had its own definition of types it supported, which
was often not consistent across separate languages. For example, if you have ever
taken a C++ DLL function declaration and tried to figure out how to port the
types in its formal parameter definitions to those types supported by Visual Basic,
you will have a good appreciation of what a convenience a common type system
will provide. The CTS shines through in its definition of rules it places on lan-
guage compilers targeting the .NET platform. It provides rules that the compilers
must follow with respect to defining, referencing, using, and storing types.

Language compilers have always been responsible for maintaining information
about types of variables used throughout a program and storing information
about those types to perform a certain amount of type checking at compilation
time. In addition, the language defines sets of rules pertaining to what operations
are allowed on particular types of data. For example, assume that you had the
following code fragment in your current Visual Basic application:

Dimi As Integer
Dims As String

i =1
s = "Hello"
Debug. Print i + s

This will result in a run-time error that pops up informing you of a “Type
Mismatch.” This makes sense when you look at the operation the code is
attempting to perform. Logically, one would imagine that attempting to add an
integer to a string would cause an error. Remember, though, that the semantic
rules applied to these types are what determine whether this would raise an

159

www.syngress.com

160

Chapter 4 * Common Language Runtime

error or not. However, let’s look at the following C code that attempts a similar

operation:
int i =1
char s[5] = "Hello";
printf("%", i + s);

Running this code will not raise an error at all. It outputs a large number and
continues on without a glitch. This is because C handles strings difterently than
Visual Basic does. C really has no concept of the string data type, and it imple-
ments them as character arrays. Because arrays are treated as pointers in C, it
simply adds the integer value 1 to the number value of the array’s location in
memory (you can show this by outputting the value of &s as well). These two
languages clearly exhibit a difference in how they define encapsulating a string
into a type. To imagine these two languages coexisting with one another would
not be very feasible. Not only does one language exhibit a type that the other
does not, but their implementations of that particular type of data is also com-
pletely difterent. We can not have this kind of inconsistency if we want to achieve
efficient cross-language integration, and the CTS ensures that these sort of infrac-
tions would not occur.

The CTS defines the rules that the language compilers must abide by to
ensure strong type standardization. The fact that each language compiler must
treat types in a consistent manner is the basis on which the CTS exists and allows
for objects created in the different languages to correctly interact with one
another. The .NET platform provides a programming model that is based on the
CTS (see Figure 4.3). As mentioned previously, everything derives from the
System. Object class. The String and Array classes are direct descendants thereof,
and the other familiar primitive datatypes reside within, or inherit from, the
Value Type class.

Type Casting

Type casting, or the capability to change a variable from one type to another, is a
common practice in any programming language. The capability to convert values
from one type to another is essential to the usefulness and power of a program-
ming language. Type casting is similar to what it has always been in Visual Basic.
At times, you may be getting data from somewhere in one data type, but you
need to use it in a different context from within your code. A perfect example of
this is grabbing data from a text file. This data may be a set of delimited numeric

www.syngress.com

Common Language Runtime * Chapter 4

values that you need to perform some computations on. When you read the data
in, it will more than likely be read into a string that must then be converted to a
usable number.

Figure 4.3 .NET Type System

Object

String Array Value Type

Boolean Byte
Char Currency
DateTime Decimal

Double Int16

Int32 Int64
Single TimeSpan

VB.NET still supports all of the explicit type conversion functions you are
accustomed to, such as CStr, CDbl, CSng, and so on. However, note that all of
the primitive data types from previous versions of Visual Basic are now encapsu-
lated into objects with constructors and all (remember, everything is an object).
These objects provide their own internal mechanisms for providing type casting
and offer more capabilities than the standard type conversion functions you are
accustomed to. Again, those with any exposure to Java will feel right at home
seeing how this is implemented. For example, in current versions of Visual Basic,
we may take a string and wish to store it into an integer:

Dimi As Integer
Dms As String

s = "12345"
Clnt(s)
MsgBox i

161

www.syngress.com

162

Chapter 4 * Common Language Runtime

We could perform the exact same operation in VB.NET, but let’s begin to
familiarize ourselves with our new OO language and its syntax:

Dimi As Integer
Dims As String

s = "12345"
i = s.Tolnt32
MsgBox(i)

Notice that everything here is left the same except for how we perform the
type conversion and the parentheses around the parameter in the call to our
MsgBox function.

Here, we are using the String object’s intrinsic type conversion method,
Tolnt32, to perform the actual conversion to an Integer (note that Integer’s are
now 32 bits in VB.NET). However, let’s see how we can wrap up that code into a
more appealing VB.NET OO compliant syntax:

Dimi As Integer = New String("12345"). Tolnt 32
MsgBox(i)

This snippet is not a very practical one, but it offers you an idea of what
working with the new syntax of VB.NET will be like. The main focus of this sec-
tion was to comfort you in knowing that the type conversion functions you have
become accustomed to are still there if you want to use them. Hopefully, how-
ever, you will try to quickly adopt the intrinsic type conversion functions of the
data types themselves as your preferred method.

Developing & Deploying...

Embrace Your Parameters

VB.NET is insistent upon enclosing parameters of function calls within
parentheses regardless of whether we are returning a value or whether
we are using the Call statement. It makes the code much more readable
and is a new standard for VB programmers that is consistent with the
standard that nearly all other languages adopted long ago.

www.syngress.com

Common Language Runtime * Chapter 4

Garbage Collection

Another huge transition in how you will code is the inclusion of Garbage
Collection under the CLR. Essentially, the CLR Garbage Collector monitors a
program’s resources looking for objects no longer in use when the available
resources are reduced to a certain limit. It then frees the memory of these unused
objects to allocate memory for other objects and tasks that will need it. This is
quite a change from the reference counting scheme implemented in COM.
Given this basic idea of what Garbage Collector is doing for us, let’s talk in a bit
more detail on how it all works and about the pros and woes you might face
with this new automatic memory management implementation.

The decision to move to automatic memory management did not come
about without a lot of heated debates. Many hardcore COM developers were
insistent upon maintaining the reference counting scheme. The most influential
reasons behind the move to implementing Garbage Collection was that it
increased performance, eliminated common reference counting errors resulting
from misuse, and did away with the circular reference problem. Some of these
issues you may feel have little relevance to you. Some of these issues you may
have never faced nor feel that you will ever encounter. So why this drastic
change in the way things work? Remember that one of the main features of the
NET platform is language interoperability. By moving the task of memory man-
agement to the runtime to handle, we remove inconsistencies and errors that can
be introduced by the programmer. This allows programmers of different languages
under the .NET platform to concentrate on implementing objects with rich
functionality, without having to worry about implementing a scheme to manage
those objects. Oh, and of course, we do away with the circular references
problem. To better understand why this is so, we must look at how Garbage
Collection works under the CLR.

The CLR requires that all resources be allocated from the managed heap.
Unlike previous runtimes when you had to free objects from the heap explicitly,
Garbage Collector in the CLR does all of this for you automatically. It does this
via a rather complex algorithm.

Essentially, Garbage Collector provides a mechanism by which it can deter-
mine which objects are still being used and which are not. Those that are no
longer in use get collected. To help improve performance, Garbage Collector
implements generational garbage collecting. Generally speaking, a generation
simply categorizes objects on the heap into sections called generations. The idea
behind this is that the longer an object stays alive, the older the generation it will

163

www.syngress.com

164

Chapter 4 * Common Language Runtime

exist in. Research and experience shows that this is the usual trend. If an object is
relatively new, we assume it will have a short life span (no guarantee we will use
it for very long). However, if we see an object that is relatively old, for example, it
has already survived several collections, we may assume it will continue to last
even longer. Currently, Garbage Collector under the CLR supports only three
levels of generations: 0, 1, and 2. Generation 0 is where new objects are placed,
generation 1 is for those that have survived a single collection, and generation 2
is for those that have survived two or more collections. How does this improve
performance? Well, Garbage Collector performs a collection when generation 0
becomes full. It can then decide if it should perform a collection on all the
objects on the heap or just the newer ones located within generation 0. For
applications that may contain many objects in generations 1 and 2, this can
greatly reduce the overhead encountered during a collection.

Developing & Deploying...

Collection of What?

In .NET, the term “collection” is often used to refer to the garbage col-
lecting mechanism. Of course, the Collection object we are familiar with
still exists, as well as the introduction of a Collections namespace that
introduces some useful data structures for you to use. Just remember to
take into account the context under which the term “collection” is used,
and you will be fine.

Object Allocation/Deallocation

When a process is first initialized, the CLR reserves some contiguous space in
memory for the process, which has no storage allocated to it. This is the managed
heap. As objects are created via the New keyword, they are placed onto the heap.
This process continues until there is not enough memory left on the heap to
allocate memory for the next object requesting resources. At this point, a collec-
tion must be performed. Garbage Collector applies its algorithm for determining
which objects are no longer in use on the managed heap and disposes of them
accordingly.

In previous versions of Visual Basic, because we were in control of destroying
objects that we created, object deallocation was clearly defined. When writing

www.syngress.com

Common Language Runtime * Chapter 4

classes, you could write code in the Terminate event of the class and feel com-
fortable knowing that after the object was destroyed, the code in that event
would fire immediately. This is known as deterministic finalization. With the intro-
duction of Garbage Collector, this is no longer the case. Now we are dealing
with non-deterministic finalization—we can not predetermine the exact time when
the finalization for an object will occur. This probably raises a few brows. Many
developers have come to rely upon the Terminate event to perform other main-
tenance or cleanup routines within their applications. With the introduction of
Garbage Collector, the Terminate event has been replaced by the Finalize event.
The Finalize event does not offer the same functionality as the Terminate event
for reasons we have just talked about. Though both events fire when the object is
released from memory, we lose the deterministic characteristics that the
Terminate event and COM reference counting offered.

Now the main recommendation is to develop objects that do not require any
sort of cleanup. This is a nice consideration but it just isn’t possible in a lot of
cases. For example, you may create a class that holds an open, locking reference to
some sort of data file, and in the case of your object being terminated, you want
to ensure you release this hold on the file that you had. Previously, you would
just write the code necessary to release this resource in your class Terminate
event. Now, you may be tempted to do the same in the Finalize event, but in a
time critical application, where perhaps another object will be instantiated to use
this file before any collection is performed, you need a way to release this
resource much more quickly. Well, we all need to start practicing a new standard
of coding when it comes to situations like these. You will want to implement a
Close or Dispose method in your class that the client will call explicitly to
instruct your object to perform the cleanup operations required. You are not
limited to naming your cleanup routines either Close or Dispose, but this is the
convention Microsoft would like for you to use.

Close/Dispose

So how should these methods be implemented, exactly? Sticking to the recom-
mended conventions, you should use Close if you want to allow the object to be
able to be reopened or reused again in future operations. Continuing with the
earlier example, the Close method may close the file that your object had a lock
on, but remain “alive” for future use. On the other hand, the Dispose method
would be called to completely destroy your object. This is synonymous to setting
an object to Nothing in current versions of Visual Basic.

165

www.syngress.com

166

o

Chapter 4 * Common Language Runtime

Summary

In this chapter, we took an overall look at the new features offered by the .NET
platform, mainly through its inclusion of a common runtime. The idea of man-
aged code seems so straightforward and logical that it’s a wonder we haven’t
stumbled across an architecture like this sooner. Regardless of that perception, the
day has arrived, and developers across the globe can begin to prepare for, and take
full advantage of, this new realm of coding and design that lies ahead.

We discussed the benefits of managed code by the CLR throughout the
chapter, and saw how it will change the way you program. Automatic memory
management, self-describing components, and true language integration pave the
way for a more scalable, maintainable future in development. We also covered, in
brief, what will become of the COM era with this new birth of .NET. We made
it quite clear, or at least we hope, that COM is far from dead, and the team at
Microsoft, we believe, is aware of that fact. Thus, you know that you have some
means of “backwards compatibility” with regards to some of your pre-existing
components, if and when you make the full transition over to .NET.

We noted that everything derives from the System.Object class. We saw how
even our most primitive data types have been included in this true hierarchical
framework. A truly object-oriented language has been born with the release of
VB.NET, and we highly recommend that you embrace it as soon as you have the
opportunity. Becoming familiar with OO concepts and principles now has real
purpose and relevance to you as a Visual Basic developer. The syntax may take a
bit of time to become accustomed to, but hopefully by now you realize that once
you do become familiar with it, it will only speed up and ease your work and
improve your productivity.

To sum up, we have seen how the difterent components comprising this run-
time work together to provide a common type system and self-describing com-
ponents that allow for the runtime to offer us great new benefits, such as
cross-language integration and garbage collecting. Understanding how each of
these services work is important. The concepts of namespaces and providing a
truly hierarchical inheritance framework gives us a better understanding of why
Visual Basic had to become more object-oriented, and gives us a better under-
standing of the benefits and scalability this sort of framework ofters to the
platform as a whole.

WWW.syngress.com

Common Language Runtime * Chapter 4 167

Solutions Fast Track

Component Architecture

M Self-describing components allow for easy maintainability and
deployment.

M Components developed under .NET will still be able to utilize the ‘
benefits of the transactional services provided by COM+.

Managed Code versus Unmanaged Code ﬂ

M Managed code provides the information necessary for the CLR to
provide numerous services.

M Managed code allows all languages that conform to the standards
required to run under the .NET platform to use a single shared runtime.

M Unmanaged code does not benefit from all of the things that managed
code benefits from.

M Microsoft has provided a means by which managed code and unman-
aged code can communicate, thus allowing integration of new, powerful
NET applications with legacy components.

System Namespace

M Almost all system functionality has been wrapped up within a single
entity called the System namespace.

M The System namespace provides the Object class from which all other
classes derive.

M The System namespace contains all the other classes and namespaces
that provide a means for developers to utilize objects to carry out almost
any task.

Common Type System

M All languages producing managed code abide by a strong type
standardization.

168 Chapter 4 * Common Language Runtime

M Use of types across different languages will no longer cause any

headaches.

Garbage Collection

M The CLR performs automatic memory management in your
applications.

k M COM reference counting has been replaced by the Garbage Collection
algorithm.

M Deterministic finalization is lost, and you must employ new methods to
code around this issue.

Frequently Asked Questions

o

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Sometimes I may want to force a collection to occur. Can I do this or must [
rely on the system invoking a collection only when the managed heap
becomes full?

A: Yes you do have some control over Garbage Collection via the System.GC
class. To tell the runtime-te perform a collection, you simply invoke its

i i Collect method:

GC. Col | ect ()

This is an overloaded method in ‘which you can also specify, as a
parameter, which generation you wish to be collected (either 0, 1, or 2).

Q: Okay, I can live with implementing a Close/Dispose method for my objects,
but I also want to implement a Finalize method to perform cleanup in case
the Close/Dispose method is not properly called. If the Close/Dispose

method is properly called, how do I ensure that the Finalize method does not
also try to execute the code already run in the Close/Dispose method?

WWW.syngress.com

Common Language Runtime * Chapter 4 169

A: Well, you might think of implementing a flag variable that you set in your
Close/Dispose method and then check in the Finalize method to determine
whether the code needs to be run in the Finalize method when your object
is finally collected. However, a much more intuitive and efficient solution
exists. The System.GC class provides a method, SuppressFinalize, which takes
as a parameter an object and instructs the runtime not to call the object’s
Finalize method. If you implement something like the following in your
object, you can ensure proper behavior: . ‘

Publ i ¢ Sub Dispose() =

"performclean up on this object here

"call nethod to suppress the finalize nethod
CC. Suppr essFi nal i ze(Me)
End Sub

Protected Overrides Sub Finalize()
"if Dispose was not called, call it now
Di spose()

End Sub

This is an improvement over the idea of simply using a variable flag in
your code. One reason is that it reads better. But more importantly, this
method implements something like setting a flag, but at the system level. It
ensures that the object is not placed in the queue of objects that need to be
finalized, and thus, the Garbage Collector will not have another object to
worry about, and performance will be improved.

Q: Can I monitor the CLR’s activities/performance in real time?

A: Yes, you can achieve this by running Perfmon.exe in Windows2000, clicking
the “+” icon on the toolbar, and selecting which object of the CLR you wish
to monitor.

Q: We have a lot of code in place under COM that we will want to utilize even
after we have moved to .NET. Should we port this code over or should we

simply use the COM Interop services to communicate with our unmanaged
objects?

WWW.syngress.com

170 Chapter 4 * Common Language Runtime

A: This is a delicate issue and will take some serious consideration. What to do
will most likely vary from situation to situation. Things you may want to
consider are the following:

= How long can you afford to use these legacy objects? Will they need to
be ported eventually? If so, you may want to go ahead and consider the
transition process sooner than you had anticipated.

= Is performance a factor? If yes, then you will want to port over for a
couple of reasons. One, your existing objects are communicating
through wrapper classes. This is introducing another level of indirection
and work that must be done by the Interop service through the wrapper
class. This, in and of itself, will cause a hit on performance. Secondly, by
porting your code over to run under the CLR, you get to take advan-
tage of all the benefits of managed code we have discussed herein.

= Do the objects function correctly via the COM Interop service? The
wrapper classes have yet to be heavily utilized in industry at this point,

and some inconsistencies may exist between running your COM objects
- directly as opposed to through the COM Interop service. The wrapper
% classes are customizable, however, and you may find solutions that way.
P Again, though, you will need to make considerations based on cost of
learning and implementing fixes (workarounds) for legacy code versus
the cost of porting the code to target the CLR.

WWW.syngress.com

Chapter 5

.NET Programming

Fundamentals

Solutions in this chapter:

= Variables

Constants

Structures

Program Flow Control

~ Arrays

Functions

Object Oriented Programming

String Handling

Error Handling

M Summary
M Solutions Fast Track

M Frequently Asked Questions

171

172

Chapter 5 * .NET Programming Fundamentals

Introduction

Even though this book is focused on the intermediate programmer, some funda-
mental programming is included. This can be used as a refresher, or for those of
you from different programming languages, it will provide you the syntax for
some fundamental programming. This chapter is not intended to teach beginners
how to program. We cover how variables are declared and used. Variable types
have changed since Visual Basic 6.0.You must be more specific with data types
now. You cannot count on Visual Basic to automatically convert everything for
you. Also new to Visual Basic .NET are structures. If you have programmed in C,
this will be familiar. This replaces the Type in previous versions of Visual Basic.
Structures allow you to logically group together variables of difterent (or same)
data types. Each member of a structure is given a name. It allows you to utilize a
group of data as a single unit with access to its members by name.

When developing applications, you have to be able to dynamically set the
flow of a program’s execution. There are several programming fundamentals to
allow you to control the flow of execution. This chapter shows you the syntax
and usage for decision making and looping. Arrays allow you to store data that
can be accessed by indexes rather than names. Arrays have changed somewhat
from previous versions, and it is important to understand these difterences.
Functions allow you to separate code into units of functionality. There are many
benefits to functions when developing applications. Working with strings can
sometimes be confusing. There are numerous functions available for manipulating
strings. We look at some of these functions and how to use them.

Visual Basic .NET is now arguably a true object oriented programming lan-
guage. Everything is an object. It is important to understand what object oriented
programming is and to shift your thought process. A brief overview of what con-
stitutes object oriented programming—and how Visual Basic satisfies it—is
included 1in this chapter.You can now create and inherit classes. You can even
inherit classes written in other programming languages, which is a powerful new
feature. Visual Basic classes are now more like C++ classes. You don’t have to
create class modules anymore to define a class.

A major paradigm shift in Visual Basic .NET is error handling. After years of
begging by programmers, Visual Basic now uses structured error handling. Error
handling now shifts to the use of exceptions. This is similar to other program-
ming languages. This will allow you to have more robust error handling with
better control and more comprehensive handling of errors than previous versions.

www.syngress.com

.NET Programming Fundamentals * Chapter 5

You will have to learn some new concepts, but this will empower you to develop
applications that are more responsive to errors.

Variables

A wvariable 1s simply a named memory location. When writing programming code,
you’ll find numerous situations where you need to store data It could be for tem-
porary values during calculations, information on a customer, and so on. This data
is stored in memory. Instead of referring to the memory location by actual
memory address, you can give it a name by which you can refer to it. You give it
a name by declaring a variable and giving it a data type. When naming a variable,
you must follow a few rules:

= It must start with an alphabetic character.

= It can only contain alphabetic characters, numbers, and underscores.
= [t cannot contain a period.

= It can not be more than 255 characters.

= It must be unique within the current scope (we discuss scope shortly).

The data type determines how much memory is allocated to store data in.
Visual Basic .NET has a number of built-in data types that are specified in the
Common Language Runtime. Later, we will see how to create our own custom
data types. For those of you who have used the previous versions of Visual Basic,
you know that if you don’t give it a variable type, it is implicitly assigns it as a
Variant data type. In .NET, the Variant data type no longer exists. In Visual Basic
NET, if you don’t specify a data type, it defaults to an Object data type.You
should always specify the data type for a variable. When you declare the data type
for your variables, this is called strong typing. Using the type of variable with the
smallest size that will meet your needs is good programming practice. For
instance, if you are going to add integers that will always be less than 100, using
an Integer would be a waste of memory when a Byte would suftice. However,
ensure that the variable is large enough for all circumstances. Also, by using strong
typing, you will be able to use Intellisense for your variables, the compiler can
perform type checking to help reduce the possibility for runtime errors, and your
code will execute faster because it doesn’t have to implicitly determine the data
type. In Table 5.1, we take a look at the data types in Visual Basic .NET, including
their size and range.

173

www.syngress.com

174 Chapter 5 * .NET Programming Fundamentals

Table 5.1 Comparing Built-In Data Types

VB.NET

Type Size Range

Boolean 4 Bytes True or False

Byte 1 Byte 0-255 unsigned

Char 2 Bytes 0-65,535 unsigned

Date 8 Bytes 1/1/1 CE to 12/31/9999

Decimal 12 Bytes +/-79,228,162,514,264,337,593,543,950,335
with no decimal point;
+/-7.9228162514264337593543950335 with
28 places to the right of the decimal; smallest
nonzero number is
+/-0.0000000000000000000000000001

Double 8 Bytes -1.79769313486231E308 to
—-4.94065645841247E-324 for negative values;
4.94065645841247E-324 10 1.79769313486232E308
for positive values

Integer 4 Bytes -2,147,483,648 to 2,147,483,647

Long 8 Bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Object 4 Bytes Any object type

Short 2 Bytes -32,768 to 32,767

Single 4 Bytes —-3.402823E38 to —1.401298E-45 for negative values;
1.401298E-45 to 3.402823E38 for positive values

String 10 Bytes + 0 to approximately 2 billion Unicode characters

(characters
in string * 2)

User- Sum of the Range dependent data type for each member

Defined size of its

Type members

We have discussed how to name variables and the data types available. Now let’s

see how to declare variables. As in previous versions of Visual Basic, you use the

Dim keyword. The following are some common examples of declaring variables:

Dim x as |nteger

Dmy, z as Single

Dim str as string

Di m obj

www.syngress.com

"defaults to Object

.NET Programming Fundamentals * Chapter 5

As in previous versions of Visual Basic, you can also specify the data type of a
variable by using identifier type characters. This is done by appending a type char-
acter to the end of a variable name to specify its type. These identifiers can also
be used with constants and expressions to explicitly declare their data type. Here
are some examples of using the identifier type characters:

D m i nt X% ' % character identifies it as an Integer data type
Di m | ngX& ' & character identifies it as a Long data type

Di m decX@ ' @character identifies it as a Decinal data type
Di m sngX! " I character identifies it as a Single data type
Di m dbl X# ' # character identifies it as a Double data type
Dim strX$ ' $ character identifies it as a String data type

New to Visual Basic is the capability to initialize variables when you declare
them, which is a feature that C++ programmers are accustomed to. By default,
numeric variables are initialized to zero, a string is initialized to an empty string
(), and an object variable is initialized to Nothing. If you want to initialize a
variable to a value other than the default, you can now do it on the same line
that you declare it. You can also initialize Object data types, but we take a look at
that later in the chapter. Here are some common examples of initializing variables
when declaring them:

Dim x as Integer = 5
Di m dbl Val ue as Double = 22.5

Constants

Constants are similar to variables. The main difference is that the value contained
in memory cannot be changed once the constant is declared. When you declare a
constant, the value for the constant is specified. So, why bother with a constant?
Why not just use the value in your code? Because using constants rather than
hard-coded values is good programming practice. A common illustration for the
use of constants is the use of rates. Say you are developing an application that uses
a special internal company factor when determining prices for products. You
might use this factor in numerous places throughout your code. If you used hard-
coded values, and the factor changed, you would have to search the code and
change the value everywhere it was used. If you were using a constant instead, all
you would have to change is the value of the constant—this would automatically

175

www.syngress.com

176

Chapter 5 * .NET Programming Fundamentals

propagate the change to your entire application. Here are some examples of
declaring constants:

Const X As Integer = 5

Const str As String = "Conpany Nane"

Const X As Double = 0.12

Structures

A structure allows you to create your own custom data types. A structure contains
one or more members that can be of the same or different data types. Each
member in a structure has a name, which allows you to reference the members
individually by name even though the structure as a whole is considered a single
entity. In previous versions of Visual Basic, structures were implemented using the
Type keyword. In Visual Basic .NET, the Structure keyword is used to define a
structure. This is the syntax for structures:

[Public|Private| Friend] Structure varname
NonMet hod Decl arati ons
Met hod Decl arati ons

End Structure

The following code examples show how structures were declared in Visual Basic
6.0 and now in Visual Basic .NET. Notice how a scope now has to be given to
the members. In the examples, we are just using the Dim statement. Basically,
scope determines where in the program’s code a variable can be accessed. The
Visual Basic 6.0 example is as follows:

Type Enpl oyee
No As Long
Name As String
Address As String
Title As String
End Type 'Enployee

In Visual Basic .NET, structures are declared like this:

Structure Enpl oyee
Dim No As Long
Dim Name As String

www.syngress.com

.NET Programming Fundamentals * Chapter 5

Dim Address As String
DmTitle As String
End Structure 'Enpl oyee

Now let’s take a look at how structures are used programmatically. The

example 1s for employee data. The data for an employee is a single entity, but you

would like to reference the members individually. If you did this with individual

variables, controlling the variable for each employee could become difficult. In

the following example, we can easily reference the data for different employees:

Di m enpl As Enpl oyee

Di m enp2 As Enpl oyee

enpl. No = 12345

enpl. Nane = "Caneron Wakefiel d"
enpl. Address = "123 Sonmewhere Ave."
enpl. Title = "President"

emp2. No = 12346

enp2. Name = "Lorrai ne Wakefiel d”
enp2. Address = "123 Sonewhere Ave."
enp2.Title = "Vice President"
NorTE

Structures are now very similar to classes. Structures can even contain
methods as shown in the structure syntax. There are some restrictions on
structures that are not limited in classes. For instance, you cannot inherit
a structure. Also, you cannot initialize structure members, and you
cannot use the As New statement when declaring the members.
Structures are referenced by value, not by reference. So if a structure
variable is assigned to another variable, the structure would be copied to
the new variable. This also applies to passing it to a function by value.

177

www.syngress.com

178

Chapter 5 * .NET Programming Fundamentals

Program Flow Control

In this section, we cover how to control the flow of execution of your program
code. When code is executed, certain blocks of code might only need to execute
for certain conditions. For this type of execution control, we discuss the use of
the If...Then...Else and Select statements. In other circumstances, you may
want code to execute multiple times until a certain condition occurs.You can
accomplish this with While loops. A similar case is when you want a loop to
execute a certain number of times—this case uses the For loop.

If...Then...Else

If...Then...Else statements allow you to determine which block of code is exe-
cuted based on specified criteria. For the block of code to execute, the condition
must evaluate to True. Let’s take a look at the syntax for these statements, which
take on two basic forms: the single-line form and the block form. The single-line
form allows you to put the statement all on one line, as follows:

If condition Then [statenent] [Else el sestatenent]

The block form breaks the statement up over multiple lines. This format is
more structured and easier to read and follow. The syntax for the block form is
shown in the following code. The brackets around the Elself and Else statements
indicate that they are optional:

If condition Then
[st at enent s]

[El self condition-n Then
[el sei fstatenments]

[El se
[el sestatenents]]

End If

When implementing If...Then...Else statements, you must always include
the If... Then statement and provide a condition. If this condition is true, the
block of code will execute. This block is terminated by one of the following
statements: Elself, Else, or End If. If the condition is not true, it will see if any
Elself conditions are true. The Elself statement allows you to enter multiple
additional condition execution blocks. The blocks will execute if its condition is
true. However, only one block will execute. Once a block of code is executed,

www.syngress.com

.NET Programming Fundamentals * Chapter 5 179

execution move to the end of the If...Then...Else statement. It doesn’t execute

every True condition, which means that you should be careful about the order of

the blocks. The Else statement does not have a condition; this block will execute

if none of the blocks above it are true. The Else block is always the last block in

an If...Then...Else statement. You can have only one Else statement.

Let’s take a look at an example. This example determines the shipping cost

based on amount of purchase. Notice that the Else clause is executed when the
purchase amount is greater than all of the specified amounts. Notice the order of

the conditions. If we had put the condition for less than the third shipping class,

the code would never get to the blocks for the first and second shipping classes:

Const M N AMI As Single = 9.99

Const SECOND AMI' As Single = 29.99
Const THIRD_AMI As Single = 49.99

Const M N _SH P_COST As Single = 10.49
Const SECOND SHI P_COST As Single = 21.5
Const THI RD_SHIP_COST As Single = 26.33
Const MAX_SHI P_COST As Single = 30.48

Di m sngShi pCost As Single

If sngAmt <= M N_AMTI Then
sngShi pCost = M N_SHI P_COST
El self sngAnt <= SECOND AMI Then
sngShi pCost = SECOND_SHI P_COST
El self sngAm <= TH RD_AMI Then
sngShi pCost = THI RD_SHI P_CCST
El se
sngShi pCost
End |f

MAX_SHI P_COST

Notice that the If...Then...Else statements use less-than or equal compar-

ison operators. Visual Basic provides a number of comparison operators (shown in

Table 5.2) to allow extensive comparisons of expressions.

www.syngress.com

180 Chapter 5 * .NET Programming Fundamentals

Table 5.2 Comparison Operators

Comparison Operator

Comparison Type

AV V A A

\Y

Equal to

Less than

Less than or equal to
Greater than

Greater than or equal to
Not equal to

In addition to the comparison operators listed in Table 5.2, you can use two

additional operators for special purposes: the Is and the Like operators. The Is

operator is used to compare object references. If two object references point to the

same object, the comparison is True. The Like operator is used to compare a string

to a string pattern rather than the exact copy of a string. This is similar to the SQL
Like clause. Wildcards give you flexibility in the pattern matching. Table 5.3 lists
the wildcards that are available for the Like operator.

Table 5.3 Like Operator Wildcards

Wildcard Character

Pattern Matches

*

#
[character list]
[! Character list]

Matches a single character

Matches all or none characters

Matches a single digit

Matches any single character in the character list
Matches any single character NOT in the character list

The Like operator gives you many options when looking for patterns in a

string. If the pattern is found in the string, the expression returns True. If the pat-

tern is not found, the expression returns False. Let’s look at some examples of

using the Like operator and the value of the expression:

"abcdefg" Like "a*a"
"abcdefga" Like "a*a"
"abc" Like "a?a"

aba" Like "a?a"

"aba" Like "a#a"

www.syngress.com

' Expression is Fal se
' Expression is True
' Expression is False
"Expression is True

' Expression is False

.NET Programming Fundamentals * Chapter 5

"ala" Like "a#a" ' Expression is True
"abcdefga" Like "a[a-z]a" 'Expression is False
"aba" Like "a[a-z]a" 'Expression is True
"aba" Like "a[la-z]a" ' Expression is Fal se
"aBa" Like "a[la-z]a" 'Expression is True

Sometimes a single expression in an If...Then...Else statement is not
enough.You can use multiple expressions to create a single True or False value for
an If...Then...Else statement.You can use the logical operators to create com-
pound expressions that, as a whole, returns a single Boolean value. Table 5.4 lists
the logical operators.

Table 5.4 Logical Operators

Logical

Operator Function

And Both expressions must be True for a True result

Not Expression must evaluate to False for a True result

Or Either one of the expressions must be True for a True result
Xor Only one expression can be True for a True result

You can combine the logical operators to create multiple expressions. You can
use parentheses to logically group expressions together. Let’s take a look at some
examples of compound expressions:

1=1 And 1=2 ' Expression is Fal se
1=1 And 1<2 'Expression is True
1<1 O 1=2 ' Expression is Fal se
1=1 & 1=2 ' Expression is True

s
(1=1 And 1=2) O 1=3 Expression is Fal se

(1=1 And 1=2) O 1<3

Expression is True

Not 1=1 ' Expression is Fal se
1=1 And Not 1=2 'Expression is True
1=1 Xor 1<2 ' Expression is Fal se
1=1 Xor 1<2 ' Expression is True

As you can see, you have virtually unlimited possibilities for determining a
result in your applications. Now let’s take a look at using some of these expressions

181

www.syngress.com

182

Chapter 5 * .NET Programming Fundamentals

in an If...Then...Else statement. In the following example, the numbers from
the preceding example are replaced with variables:

IntA =
IntB =
IntC =
IntD =

P W N

If intA=sintD And intA=intB Then ' Expression is Fal se
' Do sonet hing

El self intA=intD And intA<intB Then ' Expression is True
' Do sonet hi ng

Elself intA=sintD O intA=intB Then ' Expression is True
' Do sonet hi ng

Elself (intA=intD And intA=intB) O intA=intC Then 'Expression is False
' Do sonet hing

El self intA=intD And Not intA=intB Then ' Expression is True
' Do sonet hi ng

El self intA=intD Xor intA<intB Then ' Expression is Fal se
' Do sonet hi ng

El se
' Do sonet hing

End |f

Select Case

The Select Case statement is similar to the If...Then...Else statement. The
functionality is basically the same, except you get a cleaner way to write the
code. Whenever If...Then...Else statements have more than a few Else...If
blocks, the code becomes hard to read and follow. A general rule is to use the
Select Case statement when you have more than two Else...If statements. The
syntax for the Select Case statement is as follows:

Sel ect Case testexpression
[Case expressionlist-n

[statenents-n]]

www.syngress.com

.NET Programming Fundamentals * Chapter 5 183

[Case Else
[el sestatenents]]
End Sel ect

The Select Case will compare the Case statement expressions to the
testexpression. The expressionlist is one or more values separated by commas to
compare against the festexpression. The statements for the first Case that matches
the festexpression will be executed. Even if subsequent Case expressions match,
they will not be executed. If none of the Case expressions match, the statements
under the Case Else will be executed. Let’s look at an example. Let’s take the
If...Then...Else statement from the preceding code and convert it to a Select
Case statement:

Sel ect Case sngAnt
Case |Is <= M N_AMT
sngShi pCost = M N_SHI P_COST
Case |s <= SECOND_AMT
sngShi pCost = SECOND_SHI P_COST
Case |s <= TH RD_AMI
sngShi pCost = THI RD_SHI P_COST
Case Else
sngShi pCost = MAX_SHI P_COST
End Sel ect

You can also use multiple expressions or even ranges in a Case expression,
and you can also match strings, as shown in the following code:
Sel ect Case intTest
Case 1 To 5, 10 To 15, 21
' Do sonet hi ng
End Sel ect

Sel ect Case strTest
Case "nmatchl", "match2"
msgbox(" Found match 1 or 2")
Case "match3"
nsgbox(" Found match 3")
End Sel ect

www.syngress.com

184

Chapter 5 * .NET Programming Fundamentals

While Loops

At times, you may wish to execute a block of code multiple times without
knowing beforehand how many times it needs to execute.You can use a While
loop to execute a block of code until a condition becomes False. That is, the loop
will continue to execute as long as the condition remains True. A common
example is looping through a recordset until you reach the end of it. You can use
While loops in multiple ways—Ilet’s look at the syntax for the first way to use it:

Do [{Wiile | Until} condition]
[st at enent s]
[Exit Do]
[stat enent s]

Loop

Or:

[st at enent s]
[Exit Do]
[st at enent s]

Loop [{Wiile | Until} condition]

The loop is started with the Do While keywords. The condition is checked to
see if it 1s True prior to each execution of the statements including the first itera-
tion. The Do Until statement will execute until the condition is True, whereas
the Do While will execute until the condition is False. For those of you accus-
tomed to using the While...Wend syntax, this is no longer available in Visual
Basic .NET.

In the following example, we keep adding the value 5 to a variable as long as
its value stays below 100:

Dimval As Integer = 0
Do Wiile val < 100
Val = val + 5

Loop

The code inside the While loop will execute over and over until the variable
val becomes greater than or equal to the value 100.Sometimes, you may want to
exit a While loop before the condition is False. Let’s expand our previous

www.syngress.com

.NET Programming Fundamentals * Chapter 5

example to count how many times we add the value 5 to the variable, and if we
add it 10 times, exit the loop.You can exit a While loop at any time by using the
Exit Do statement as shown here:

0

Dim val As Integer
Dimctr As Integer = 0
Do Wile val < 100
val = val + 5
ctr = ctr + 1
If ctr >= 10 Then
Exit Do
End If
Loop

The While loop will stop executing under two conditions: when the variable
val is greater than or equal to the value 100 or when the variable cfr is greater
than or equal to the value 10. Of course, we could create a compound condi-
tional statement to achieve the same result and make our code cleaner.You can
use the same logical and comparison operators described in the “If... Then...Else”
section earlier in the chapter. Sometimes, exiting a loop cleanly is difticult, and
you will need to use the Exit Do statement. Here is an example of how this can
be rewritten:

0
Dimctr As Integer 0
Do While val < 100 And ctr < 10

Dim val As Integer

val = val + 5
ctr = ctr + 1

Loop

Sometimes, you may always want a loop to execute at least one time. In the
preceding examples, if our variable val had been initialized to the value 100, the
code inside the loop would have never executed. To force our code inside the
loop to execute at least once, you can use another variation of the While loop as
shown here:

Dim val As Integer

Dimctr As Integer
Do

185

www.syngress.com

186

Chapter 5 * .NET Programming Fundamentals

val = val + 5
ctr = ctr + 1
Loop Until val > 100 And ctr >= 10

In this example, the code always executes at least once because the condi-
tional is not evaluated until after the code inside the loop has executed. Also note
that you can use Loop While to execute until the condition is False. While
loops can be very powerful for performing complex operations. You can also nest
loops inside of each other.

For Loops

The For loop is similar to the While loop except in this case, you are executing
the code in the loop a fixed number of times. This is useful when reading or
writing to arrays (covered in the next section). Let’s take a look at the syntax:

For counter = start To end [Step step]
[st at enent s]
[Exit For]
[st at enent s]

Next

The counter is a numeric variable used as the loop counter. This variable is
used to keep track of the number of iterations through the loop. The start value is
what the loop counter is initialized to. The end value is the max value of the loop
counter before the loop stops executing. The Step clause is optional. This is how
much the loop counter will be incremented by each time through the loop after
the first execution. By default, this will increment the counter by a value of 1.
The step value can be negative to decrement the counter. In this case, the loop
will execute until the loop counter is less than the end value. As an example, let’s
create a For loop that will increment a variable 10 times by 5:

Dm | As Integer
Dimval As Integer = 0
For i = 1 To 10

Val = val + 5
Next

After the loop is finished executing, the value of the variable val is equal to
50 and the value of i will be 11.This is because after the tenth iteration through

www.syngress.com

.NET Programming Fundamentals * Chapter 5

the loop, i is incremented by 1 to 11, which is greater than the end value of 10,
and the loop stops executing. We will see some more examples of For loops later
in this chapter in the “Arrays” section.

Another form of the For loop is For...Each...Next. This loop is used with
arrays and collections. It loops through each item in the array or collection. We
haven’t discussed arrays and collections yet, but let’s look at how they are used.
The syntax is very similar to a For loop, as shown here:

For Each elenment In group
[statenents]

[Exit For]
[statenents]

Next [el enent]

The element must be the same data type as each item in the array or collec-
tion. The group is an array or collection. The loop will automatically step through
each element in the array or collection and exit the loop to the end of the array
or collection. Here is an example of looping through a collection:

Dim objltem MCollection As (bject

For Each objltem In MyCollection " lterate through itens.
If objltemval = 5 Then
Exit For ' Exit |oop.
End |f
Next

Arrays

At times, you may need to store multiple instances of like data. Arrays allow you
to do this without having to create a separate variable for each item of data. An
array stores all of the items in a single variable, and you can reference each item
by using an array index or numerical subscript. All the elements of an array have
the same data type (structures are allowed).You can “cheat” this rule by using the
Object data type, which allows you to use different data types in an array. This is
similar to using the Variant data type in previous versions of Visual Basic.

Arrays have a lower bound and an upper bound. Arrays have changed slightly
in Visual Basic .NET. The lower bounds for an array is always 0.You cannot
change the lower bound of an array as you could in previous versions of Visual

187

www.syngress.com

188

Chapter 5 * .NET Programming Fundamentals

Basic. So, if an array had 10 elements, the lower bound would be 0 and the upper
bound would be 9. As we will see later in this chapter, everything in .NET is an
object. Arrays are inherited from the System.Array object and as such can use
the properties and methods available.

NoTE

When porting Visual Basic applications to Visual Basic .NET, be careful of
the lower bounds of arrays. If you are using a for loop to iterate through
the array, and it is hard-coded to initialize the counter at 1, the first ele-

ment will be skipped. Remember that all arrays start with the index of 0.

You can think of an array as a row of items that contain values. For example,
if you had an array of integers with five elements, it would be represented as
shown here with one row of five columns where each element is a column:

1 2 3 4 5

Declaring an Array

To declare an array variable, the syntax is similar to other variables. You still use
the Dim or Scope (Public, Private, Friend, and so on) keyword except that
you add parentheses after the variable name to indicate that it is an array. For
example, to declare an array of integers with 10 elements, use the following
syntax (you are limited to an upper bound of the max value of a Long data type
[2° —1]):

Dim arr(10) As Integer

Dimarr() As Integer = New Integer(10) {}

You can also initialize the values of an array when you declare it. The fol-
lowing line of code is the syntax for declaring an array of integers and initializing
the values. Notice that the parentheses are left blank. It is automatically dimen-
sioned to the correct number of elements:

Dimarr() As Integer = {0,1,2, 3,4}

Now let’s see how we can use an array. To read or write an element in the
array, you use the array’s variable name followed by parentheses. Inside the

www.syngress.com

.NET Programming Fundamentals * Chapter 5

parentheses, the number indicates which element in the array is being referenced.
Let’s take a look at some examples:

arr(0) =5

i = arr(3)

Now, let’s take a look at how you can use a For loop with an array as men-
tioned earlier in the chapter. We will set each element of an integer array to its
index value using a For loop as shown here:

Dim arr(5) As Integer
Dimi As Integer
For i =0 To 4
arr(i) =i
Next

We could also loop through an array looking for a specific value, as in this
example:

For i = 0 To 4
If arr(i) > 10 Then
Exit For
End |If
Next

Visual Basic has two functions that are used to determine the upper and
lower bounds of an array. The LBound function is used to retrieve the lower
bound of an array (always zero), and the UBound function returns the upper
bound of an array. We could change our for loop to read as follows:

For i = LBound(arr) To UBound(arr)
arr(i) =i
Next

Multidimensional Arrays

Arrays can have more than one dimension. In fact, in Visual Basic .NET, they can
have up to 60 dimensions, although it is uncommon to go above 3 dimensions.
An easy way to picture this is to expand our previous example beyond one row
of columns to multiple rows of columns. For example, an array with three rows

189

www.syngress.com

190

Chapter 5 * .NET Programming Fundamentals

of five columns would be represented by the following illustration where the first
digit represents the row and the second digit represents the column:

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

To declare this array, use the following syntax:

Dimarr(3,5 As String

To declare a multidimension array, you separate the length for each row by a
comma. If you wanted to declare a 2-dimensional array with 5 elements in the
first dimension and 10 elements in the second dimension, declare it as follows:

Dimarr(5,10) As String

To initialize a multidimensional array when declaring it, you leave the paren-
theses empty except for a comma for each additional array dimension. For
example, to initialize an array, use the following syntax:

Dimarr(,) As String = {{"2121", "12", "13"}, {"21", "22", "23"}}

You can still use the LBound and UBound functions with multidimensional
arrays, but you need to also tell it which row to return the value for. By default,
it returns the value for the first row, which is why we didn’t need to pass in a
value for single dimension arrays. Let’s look at using the functions for iterating
through each element in the array and setting it to zero:

Dmarr(3, 5 7) As Integer
Dimi As |Integer
Dimj As Integer
Dim k As |nteger
For i = LBound(arr, 1) To UBound(arr, 1)
For j = LBound(arr, 2) To UBound(arr, 2)
For k = LBound(arr, 3) To UBound(arr, 3)
arr(i, j, k) =0
Next
Next
Next

www.syngress.com

.NET Programming Fundamentals * Chapter 5

NoTE

The memory size of an array is larger than just the memory needed to hold
the data. An array requires 20 bytes for the array, plus 4 bytes for each
dimension in the array plus the size of the data type for each element.

Dynamic Arrays

Once you have declared an array, you may need to change the size of it, which
Visual Basic allows you to do. This is accomplished using the Redim keyword.
When you declare an array, you don’t have to specify its size. You can just declare
it and the set its size later with the Redim keyword or you can redimension an
existing array. Let’s look at some examples:

Dimarr() As Integer
Dimi As Integer

ReDim arr (i)
For i = 0 To 3

arr(i) =0
Next

This example does not specify the size of the array when declaring it, but
dimensions it using the variable i to specify its size. This allows you to create
arrays to a size that is not known until runtime. Unlike previous versions of
Visual Basic, you can now change the size of all the dimensions as shown here:

Dimarr(5, 5 5) As Integer
Dimi As Integer

ReDim arr(3, 3, 3)
For i =0 To 3
arr(1, 1, i) =0
Next
When using the Redim keyword as we have seen so far, a completely new

array is created and any new existing data is lost. For example, if we initialized an
array with values for each element and then redimensioned it, the values would

191

www.syngress.com

192

Chapter 5 * .NET Programming Fundamentals

be set to their defaults (for example, integers would be set to zero). Let’s look at
an example:

Dmarr() As Integer = {1, 2, 3}
Dimi As |Integer

ReDi m arr (5)

i = arr(0)

In this example, when i is set to arr(0), its value is O rather than 1.To keep any
existing values in an array when redimensioning it, use the Preserve keyword.
This will copy the existing values into the new array, with one limitation: You can
only resize the last dimension. The other dimensions must stay the same size. So
let’s see what happens if we change the preceding example:

Dimarr() As Integer = {1, 2, 3}
Dimi As Integer

ReDi m Preserve arr(5)

i = arr(0)

This time, when i is set to arr(0), its value is still 1. Thus, the original values
are preserved after resizing the array.

NoTE

Some things to remember when using arrays:

= Because every array is an object, it also contains members that
contain the array’s rank and length information.

= [f you assign one array variable to another, only the pointer is
copied, not the entire array.

Functions

In most applications, some blocks of code are executed multiple times in different
parts of your application.You can’t just use a loop because the code is executed in
different parts of your program. Sure, you can cut and paste the code wherever
you use it, but if you discover a bug or have to change the code, you have to find
and change the code everywhere it is used. You also can’t have any typos or miss
any of the blocks spread throughout the application. You can get around this
problem by using functions. A function is a block of code that can be called (and

www.syngress.com

.NET Programming Fundamentals * Chapter 5

even passed parameters) to perform some type of functionality. When the block
of code is completed, execution returns to the line of code after the function was
called. A procedure performs this same functionality, except that a function can
return a variable. Let’s see the syntax for functions:

[Public | Private | Friend] [Static] Function nane [(arglist)] [As type]
[st at enent s]

[name = expression]

[Exit Function]

[st at enent s]

[name = expression]

End Function

The keywords prior to Function (Public, Private, and so on) deal with
scope of a function (where it can be called from).

In previous versions of Visual Basic, to return a value of a function you set the
name of the function (as if it was a variable) to the value. In Visual Basic .NET,
you can use this method or use the Return keyword to return a value from a
function as shown in the following code.The difference is that the Return key-
word returns control from the function immediately, whereas using the function
name sets the value to be returned but does not return from the function until it
hits either an End function or Exit function. In Visual Basic 6.0 and earlier,
you can do this:

Function GetPi () As Double
GetPi = 3.14

End Function

In Visual Basic .NET, you can do this:
Function GetPi () As Double

Return = 3.14 'return inmediately

End Function

Or you can do this:

Function GetPi () As Double
Dim pi as double = 3.14
GetPi = pi 'doesn't return yet
Pi =4

End Function 'returns 3.14

193

www.syngress.com

194

Chapter 5 * .NET Programming Fundamentals

Another significant difference is how parameters are passed to functions. In
previous version of Visual Basic, parameters were passed by reference by default. In
Visual Basic .NET, parameters are passed by value by default. The difference
between the two is that when