

AQA Computing A2 © Nelson Thornes Ltd 2009 1

 Unit 3 Section 2

Student worksheet

Exercises in OOP programming

Please complete a minimum of 8 ‘chips’

Exercise 1

Write a class Student with the following properties: StudentID, Name, Address, Tutor,

YearGroup. Write accessor methods for each of these properties (these are methods that

allow you to retrieve or to set these properties). Remember that the properties should be

private and the methods should be public. Declare an instance of a New Student and test that

these methods work. The solution could be form-based or console-based.

Exercise 2

Extend your main program code in Exercise 1 to enter and display the data for a class of 5

students. To input the data for more than one student use an array of type Student. However,

VB will not allow you to use the keyword NEW in an array declaration – rather tedious of it!

Each time you record a new student you will then need to set each element of the array as a

new instance of the class, e.g. ‘Student(i) = New Student’. You should still be able to do this

in a loop.

Exercise 3

Write a class Employee with the following properties: EmployeeID, DateOfBirth, and

JobTitle. Write methods to set the employee ID, date of birth and job title of that employee.

Write a method to return the employee details and test these for an employee

‘FirstEmployee’.

Exercise 4

Extend your code in Exercise 3 to include two sub-classes: Hourly paid Employee and

Salaried Employee. Add properties for the hourly pay or annual pay for these two sub-classes

and methods to set the hourly rate or annual pay for each employee. Also add separate

methods to display the weekly pay for each sub class, and ensure that your sub-classes inherit

AQA Computing A2 © Nelson Thornes Ltd 2009 2

 Unit 3 Section 2

Student worksheet

the methods from the base class. Add two new employees of each type to your program and

test that you can enter and display both the employee and salary details.

Exercise 5

Modify your code in Exercise 4 so that the method which returns the employee details is

‘overrideable’. Then, for each sub-class, replace your methods which return the salary details

with a single method which ‘overrides’ that in the base class and returns both the employee

and the salary details.

Exercise 6

A specialist tyre company fits tyres. They require a tyre-fitting system to record each fitting

as it takes place. The system should have two classes initially: Tyre and Fitting. The data to

be stored about the tyre are: the tyre type, the price of the tyre and the number in stock. The

data to be stored about Fitting are: the car registration, the number of tyres fitted and the

fitting date.

Initially, imagine that there is only one tyre type and that all cars have the same tyre type.

Tyre Type Number in stock Price of tyre

T100 10 £36.00

Create a from based OOP system that can input and process the data for a handful of sales.

Do not worry about data storage. Array declaration needs to be handled as in Exercise 2. The

‘system’ should be able to:

 record fitting details: date of fitting, number of tyres and car registration

 calculate the cost of the fitting – use a function in the tyre class and pass a parameter for the number

of tyres fitted

 reduce the number in stock by the number of tyres fitted – as above

 add stock: increment the number of tyres for a tyre type by 10.

The following is an example screen.

Extension

Extend your system to work with a number of different tyre types with different prices. Add

the facility for all aspects of your system to work with a range of different tyres and prices.

Do not worry about storing data.

