Assembly language tracing questions
All questions use the following instruction set, which is taken from the AQA specimen paper. Assume that all registers are 8 bit and that operand values are given in denary.
[image:]

The following values have been loaded into an area of memory, and should be used in all questions.

	Address
	Contents

	41
	18

	42
	27

	43
	15

	44
	3

	45
	48

For each question, use the table provided to trace the program and complete the register values. Clearly you will not know the actual instruction addresses allocated by the assembler.

	Instruction
	R1
	R2

	
	
	

	
	
	

	
	
	

	
	
	

1. LDR R1, 42
MOV R2, #10
ADD R1, R1, R2
HALT

	Instruction
	R1
	R2
	R3

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

2. LDR R1, 41
LDR R2, 43
CMP R1, R2
BNE label
MOV R3, #10
label:
MOV R3, #20
HALT
	Instruction
	R1
	R2
	R3

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

3. LDR R1, 42
LDR R2, 43
AND R3, R1, R2
HALT

	Instruction
	R1
	R2
	R3
	R5

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

4. LDR R1, 43
LDR R2, 41
MOV R3, #0
MOV R5, #1
start:
ADD R1, R1, R5
ADD R3, R3, R5
CMP R1, R2
BEQ end
B start
end:
HALT

	Instruction
	R1
	R2

	
	
	

	
	
	

	
	
	

	
	
	

5. LDR R1, 43
MVN R2, R1
ORR R1, R1, R2
HALT

	Instruction
	R1
	R2
	R5

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

6. MOV R1, #5
MOV R2, R1
MOV R5, #1
start:
SUB R1, R1, R5
ADD R2, R2, R1
CMP R1, R5
BEQ end
B start
end:
HALT

	Instruction
	R0
	R1
	R2
	R5

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

7. LDR R5, 44
LDR R2, 45
MOV R0, #1
MOV R1, #1
start:
ADD R0, R0, R1
LSL R5, R5, R1
CMP R2, R5
BEQ end
B start
end:
[bookmark: _GoBack]HALT
image1.png
Instructions that can be used in AQA assembly language questions

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in register n
and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value in
register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.

CMP Rn, <operand2> Compare the value stored in register n with the value specified by
<operand2>.

B <label> Always branch to the instruction at position <label> in the
program.

B<condition> <label> Conditionally branch to the instruction at position <label> in the

program if the last comparison met the criteria specified by the
<condition>. Possible values for <condition> and their

meaning are:
* EQ: Equal to.
e NE: Not equal to.
e GT: Greater than.
e LT:Lessthan.

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value in
register n and the value specified by <operand2> and store the
result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and store the
result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical exclusive or (XOR) operation between
the value in register n and the value specified by <operand2>
and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value specified by
<operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the number of
bits specified by <operand2> and store the result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the number of
bits specified by <operand2> and store the result in register d.

HALT Stops the execution of the program.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending upon whether the first symbol is a
#oranR:

e # - Use the decimal value specified after the #, eg #25 means use the decimal value 25.
* Rm - Use the value stored in register m, eg R6 means use the value stored in register 6.

The available general purpose registers that the programmer can use are numbered 0 to 12.

