
Dictionary

Worksheet Activity: Text Compression

Directions:
Compress the verses of the tongue twister shown below, using the techniques of text compression that
you've learned. Use the Pitter Patter example as your guide.

Notes:
A space (indicated by _) counts as a character. So do punctuation marks. You can ignore carriage returns.
The grids provided for the dictionary and compressed text are meant to make counting easier for you.

Compressed Text:

Bytes in Text

Percent Compressed
(1-(total/178))*100:

0
1
2
3
4
5
6
7
8
9
A

B

Name:_____________________

How to count:
If there's a character in a square it counts as a byte.
Index numbers on the dictionary also count as bytes.
Notice that once you go past the 10th dictionary entry
you need to invent a single character symbol as a
dictionary index.

=

Bytes in Dictionary

+

Total

Bytes in Compressed Text

Bytes in Dictionary

© Baker Franke & Marty Billingsley 2013

 178 bytes

She_sells_sea_shells_on_the_sea_shore_
The_shells_that_she_sells_are_sea_shells_I'm_sure_
So_if_she_sells_sea_shells_on_the_sea_shore_
I'm_sure_that_the_shells_are_sea_shore_shells_

Pitter_Patter_
Pitter_Patter_
Listen_to_the_rain_
Pitter_Patter_
Pitter_Patter_
On_the_window_pane

29282726252423222120191817161514131211109876543210
en3_wodniw21O5_niar2t_o1etsiL5

Compressed Text

Note: There is actually one more 2-character pattern that occurs in the text - "in" The pattern "in" occurs
twice and it was not included in the dictionary because it would actually increase the total number of bytes
in the compressed text rather than reduce it. Do you see why?

Here is the "Pitter Patter" poem example we did in class. The original poem, dictionary,
and compressed text is shown.

Recall that to arrive at this final dictionary, we had to go through several revisions looking
for patterns and realizing new ones.

Also note that the dictionary is self-referencing, with later entries referencing earlier ones.

Original Poem

Text Compression :: Pitter Patter example

 121 bytes

30 bytes (chars including spaces)

How it might actually be stored:
Recall that the ASCII code for english text requires only 7 bits since there are only 128 ASCII
characters. But a byte has 8-bits. Therefore each byte carries with it one unused bit. We can
use that last bit to indicate whether the byte should be read as a normal ASCII character or as a
dictionary entry. Additionally, the dictionary can use the 8th bit to denote when the next dictionary
entry is starting.

Is this type of compression actually used?
Yes. It's called Lempel-Ziv compression or "LZ" compression for short. Lempel and Ziv are
Isreali computer scientists who invented it in the late 70s. An MIT proffessor, Terry Welch,
improved LZ compression slightly and so the current version in use is called LZW comprression.
It is the compression scheme used in ".zip" files. Of course the real Limpel-Zev compression
works by looking for patterns in the 0s and 1s since a computer program that might do the
compression would be ignorant of language. LZ compression works very well for any kind of file
in which there are a lot of patterns. Thus, it works very well for compressing plain text files since
languages tend to have a lot of patterns.

Dictionary
0 t t e r _
1 n _ t
2 h e _
3 p a
4 P i 0 3 0
5 4 4
6
7

 26 bytes

Total = 30+26 = 56 bytes = ~54% compression

