

A-LEVEL **PHYSICS A** PHYA1 – Particles, quantum phenomena and electricity

2450 June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

COMPONENT NAME: Unit 1 Particles, quantum phenomena and electricity

COMPONENT NUMBER: PHYA1

STATUS: Pre-standardisation

Questic	Part Sub Part	Marking Guidance	Mark		Comments]
---------	------------------	------------------	------	--	----------	---

1	а	(i)	us^{-} up and anti-strange \checkmark	1		In any order Bar must only be over s only
---	---	-----	---	---	--	---

1	а	(ii)	0 / zero/nothing ✓	1	

1 a (III) K^{-} / negative kaon / us \checkmark 1

1	b	(i)	classification	K⁺	ν_{μ}	μ⁺		1 mark for each
			lepton	×	\checkmark	\checkmark		correct row
			charged particle	✓	×	~	3	
			hadron	\checkmark	×	×		
			meson	\checkmark	×	×		

1	b	(ii)	conserved: baryon number OR lepton number ✓	C	Mass in either
			not conserved: strangeness/kinetic energy√	Z	loses mark

1	С	(i)	neutral pion√	1	Indicated clearly in table in any way e.g. circled or cross. If more than one box used then must be a tick with neutral pion only
1	С	(ii)	must be neutral/no charge/0 charge to obey charge conservation OR cannot be baryon to obey conservation of baryon number OR cannot be lepton to obey conservation of lepton number√	1	Can show by using equation and appropriate quantum numbers

2 a (i) Q/boron/B√	1		
--------------------	---	--	--

2	а	(ii)	P and R/ R and P \checkmark	1	

2	а	(iii)			Cannot get
			R \checkmark 6/14 is smallest fraction/0.43 smallest ratio/4.13 × 10 ⁷ C/kg \checkmark	2	second mark if not awarded first mark

2	а	(iv)	${}^{14}_{6}R \rightarrow {}^{14}_{7}X + {}^{0}_{-1}e + \overline{\nu_{(e)}} \checkmark \checkmark \checkmark$	3	one mark for each correct symbol on rhs ignore –ve sign on e. Can have neutrino with 0,0 on answer lines ignore any subscript on neutrino
---	---	------	--	---	---

2	b (i)	<u>repulsive</u> below/at 0.5 fm (accept any value less or equal to 1 fm) \checkmark <u>attractive</u> up to/at 3 fm (accept any value between 0.5 and 10 fm) \checkmark short range OR becomes zero OR no effect \checkmark	3		Can get marks from labelled graph Don't accept negligible for 3 rd mark
---	-------	--	---	--	---

2	b	(ii)	interaction: electromagnetic/em√	0	
			(virtual) photon/ $\gamma \checkmark$	2	

3 a (electron) diffraction / interference / superposition√ 1 Accept derfraction

3	b	(use of $\lambda = h/mv$)		
		λ=6.63 × 10 ⁻³⁴ /(9.11 × 10 ⁻³¹ ×2.5×10 ⁵) ✓	3	
		$\lambda = 2.9 \times 10^{-9} \text{ m } \sqrt{4}$ (2 sig figs.)		

3	С		<i>v</i> =2.5 × 10 ⁵ /207√ <i>v</i> =1200 m s ⁻¹ √ OR use <i>v=h/m</i> λ with CE from 3(b)	2	Answer alone gets 2 marks
4	а	(i)	ultraviolet / UV/ UV light/ ultra(-)violet√	1	

4	а	(ii)	<u>electron(</u> in ground state) has moved/in to higher (energy) level/shell/orbital/state OR up level/shell/orbital/state√	1		Ignore reference to photons
---	---	------	--	---	--	-----------------------------------

4	а	(iii)	(free) electrons collide with orbital electrons/mercury		Ignore any
			electrons/electrons in atom√	2	reference to
			transferring energy√		photons

4	a (iv	 v) (mercury) atoms have discrete/fixed/specific energy levels √ when electrons change levels they lose an exact/fixed/specific/discrete/set amount of energy OR photons emitted with exact/fixed/specific/discrete/set amount of energy √ (leading to photons of) fixed/particular/certain/discrete/specific/unique frequencies √ 	3	ii C C	Each mark ndependent Don't accept characteristic for 3 rd mark
---	-------	---	---	--------------	---

4	b	(i)	(use of $\lambda = c/f$)		AE penalty if
			$f=3 \times 10^8 / (254 \times 10^{-9}) \checkmark$	2	give answer to
			$f = 1.18 \times 10^{15} (\text{Hz}) \checkmark$		1 sig fig

4	b	(ii)	(use of E=hf) E=6.63 × 10 ⁻³⁴ × 1.18 × 10 ¹⁵ = 7.82 × 10 ⁻¹⁹ J \checkmark E= 7.82 × 10 ⁻¹⁹ /1.6 × 10 ⁻¹⁹ \checkmark = 4.9 (4.875) eV	2	CE b(i) Range 4.8 - 5.0 acceptable
4	С		coating <u>absorbs</u> photons/uv light√ and re-emits (photons) of low(er) energy/long(er) wavelength/low(er) frequency√	2	Ignore any description of mechanism

5	а	power increases to a maximum/(up) to 3.0 (2.8 -3.4) Ω / / (up)to 3.0 W \checkmark	2	
		then decreases√		

5	b	(i)	(use of $P=l^2 R$) when R= 0.8 Ω power = 1.95 W \checkmark 1.9 = $l^2 \times 0.8 \checkmark$ $l=\sqrt{2.375} = 1.5(4) (A) \checkmark$	3		Range 1.9 - 2.0 W for power (first mark) Current 1.5 – 1.6 A
---	---	-----	--	---	--	---

5	b	(ii)	(use of V=IR)		CE from (i)
			V=1.54 × 0.8√ V= 1.2 V√	2	

5	b	(iii)	(use of $\varepsilon = V + Ir$)		CE from (ii)
			6.0= 1.2 +1.54 × <i>r</i> √	2	
			$r = (6.0 - 1.2)/1.54 = 3.1 (2.9 - 3.2)(\Omega)$		

us ca	e of maximum power meetern (quoted) as alternative method			
----------	---	--	--	--

5	С	power would decrease (as R increased)√		
		pd/voltage across R is now constant/equal to emf \checkmark and so power proportional to 1/R/ inversely proportional to R OR can quote P=V ² /R but only if scored second mark \checkmark	3	

6	а	(i)	resistivity is defined as		
			$\rho = \frac{RA}{l}$ where <i>R</i> is the resistance of the material of length <i>l</i> and <u>cross-sectional</u> area <i>A</i> \checkmark	2	

6	a (ii)	below the critical temperature/maximum temperature which resistivity/resistance \checkmark is zero/becomes superconductor \checkmark	2		Any reference to negligible/small/very low resistance loses second mark
---	--------	--	---	--	--

6	b	(use of $\rho = \frac{RA}{l}$) $\rho = 0.70 \times \pi \times 0.0005^2 / 4.8 \checkmark = 1.1(5) \times 10^{-7} (1.1 - 12) \checkmark \Omega \text{ m}$	4	s L c r is	First mark for substitution R and I Lose 1 mark if diameter used as radius and answer s 4 times too big 4.4 – 4.8) OR if
				```	power of ten error

			 //	
7	а	The candidate's writing should be legible and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria.		
		<b>High Level (Good to excellent): 5 or 6 marks</b> The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question.		
		The candidate measures V and temperature. They have a workable method of varying temperature from 0 °C to 100 °C. They explain why R is necessary and are able to use the thermistor to measure temperature using a graph and calibration curve.	6	LOWER BAND Measure/record voltage
		Intermediate Level (Modest to adequate): 3 or 4 marks The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate.		For different temperatures MIDDLE BAND Water bath used
		The candidate measures V and temperature. They have a workable method of varying temperature from 0 °C to 100 °C. Give some indication of how an unknown temperature is		Over full range 0 – 100 °C e.g. use ice and Bunsen
		<i>measured.</i> Low Level (Poor to limited): 1 or 2 marks The information conveyed by the answer is poorly organised and		OR Need for R to form potential divider Use of graph to find

	may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only	room temperature
	partly appropriate.	TOP BAND
	The candidate measures V and temperature. They vary the temperature.	3 out the 4 points in middle band 6 marks only if all 4 points in middle
	The explanation expected in a competent answer should include a coherent selection of the following points concerning the physical principles involved and their consequences in this case.	band plus reference to thermometer and some additional e.g stirring, suggested intervals
	measurement of V from the voltmeter	
	use of a thermometer	
	use of water bath	
	use of ice	
	importance of stirring	
	explanation of the need for series resistor	
	plotting of a calibration curve	
	use of calibration curve to determine temperature of room	
7 b	reading changes in opposite way/voltmeter reading would increase	

7	b	reading changes in opposite way/voltmeter reading would increase as temperature increased ✓		
		as resistance of thermistor falls/current increases ✓ hence greater share/proportion of pd/voltage across R OR greater	3	
		current therefore larger pd/voltage across R OR total pd/voltage constant less pd/ voltage across thermistor (at higher		
		temperatures) therefore greater pd/voltage across R $\checkmark$		

Question	Specification	Торіс	Assessment
			Criteria
1	3.1.1	Classification of Particles	AO1 : 8
			AO2 : 2
2	3.1.1	Constituents of the atom	AO1 : 5
			AO2 : 7
3	3.1.2	Particle Wave Duality	AO1:1
			AO2: 5
4	3.1.2	Energy Levels and Photon	AO1 : 9
		emission	AO2 : 4
5	3.1.3	Circuits	AO2: 12
6	3.1.3	Thermistor	AO1 : 7
			AO3 : 2
7	3.1.3	resistivity	AO1 :4
			AO2: 4
		TOTALS	AO1 : 34
			AO2 : 34
			AO3: 2
			TOTAL:70