

AS Level / Year 1 Paper 2 (Edexcel Version)

Version 1

2017 © crashMATHS Limited

Question	Scheme	Marks	5
1			
(a)	Okta(s) Correct unit	B1 (1	0
(b)	enumerate the data points Point 1 and	B1	
	describes how enumerated list will be used to obtain a sample of data points		
	explains how to deal with repeats Point 2	B1	
	explains how to obtain a sample of size 30 Point 3	B1 (3	3)
(c)	small <u>er</u> amount of data to process / analyse Correct reason	B1 (1	1)
		() ()	5
	Question 1 Notes		
(b) Point 1: must include both ideas. If the candidate suggests the use of random numbers to obtain a sample, they must explain how the random numbers can be generated, i.e. use of a calculator/spreadsheet			
Point 2: sta	tes clearly that repeats will be ignored		
Point 3: i.e.	continue until 30 different numbers have been selected and their corresponding data point	S	
(c) Ignore words such as 'small' – sentence must be comparative. Must be qualified by a suitable reason, i.e. the idea that a smaller amount of data is useful for processing/analysing/oe			
Accept a valid alternative that is comparative and thorough. Ignore references to this being 'cheaper' and 'quicker' unless this is qualified. For example,			
'there is a smaller amount of data which means it is quicker to process' scores B1			
'there is a s	maller amount of data so it is quicker' scores B0		

Question	Scheme	Marks
2		
(a)	experience is the explanatory variable / the A correct explanation explanatory variable should go on the first row / salary is the response variable / the response variable should go on the second row	B1 (1)
(b)	Mean = £41875 Correct mean	B1
	Standard deviation $= \sqrt{\frac{19000^2 + + 80000^2}{8}} - (41875)^2$ Attempts to find the standard deviation (SEE NOTES) = 200021.472	M1A1
	= £20021	(3)
(c)	$\{41875 + 20021.472 \sim 61896, so the outlier is\} £80000$ Correct outlier	B1 (1)
(d/i)	e.g. it is a piece of data and we should consider all of the data Reason	B1 (1)
(d/ii)	e.g. it is an extreme value and could unduly influence analysis Reason or it could be a mistake	B1 (1)
(e)	P = 24000 + 3400(9) = £54600 Substitutes 9 into the regression line	M1A1 (2)
(f)	Unreliable, Unreliable + reason because 9 years lies outside the {regression line's} data range	B1 (1)
		10

Question 2 Notes		
(a) Accept any of the statements (or reasonable variations of them – use your judgment)		
(b) 1 st M1 – must show correct SD calculation. The '…' used in the mark scheme is to preserve space only but candidates MUST show squaring all of the terms to get the M1.		
ly score 3/3		
ould be to 3 sf.		
(c) Correct salary. Condone 'the salary corresponding to 10 years of experience' oe		
(d) (i) a correct reason to include the outlier		
(ii) a correct reason to exclude the outlier. Ignore 'it is an extreme value' without qualification		
(e) M1 – substitutes 9 into the regression line		
A1 – correct answer		
Answer should be to 3 sf but do NOT penalise 3 sf twice in this question.		
le + explanation. Ignore 'extrapolation is dangerous' without qualification. There needs to be a nowledgment that 9 years lies outside of the regression line's data set for the B1.		

Question	Scheme		Marks
3			
(a)	{Let X be the r.v., "number of customers in the sample that spend at least £20", then} $X \sim B(35, 0.6)$	Uses a binomial distribution with $n = 35$ and $p = 0.6$ {see notes for alternatives}	M1
	$P(X > 18) = P(X \ge 19) = 0.8065$	awrt correct probability (standard form not necessary)	A1 (2)
(b)	72 (weighted) squares in total, so $\frac{35}{72}$ represents 1 customer	Seen or implied	M1
	46 (weighted) squares representing customers spending at least £20, so $\frac{35}{72} \times 46$	Seen or implied	M1
	= 22.361, so <u>22 customers</u>	Either 22 or 23 customers	A1 (3)
(c)	$H_0: p = 0.6, H_1: p \neq 0.6$	Both hypotheses correctly stated	B1
Way 1	Expected value is 21, so consider the upper tail:		
	$P(X \ge 22) = 1 - P(X \le 21) = 0.4361$ OR $P(X \ge 23) = 1 - P(X \le 22) = 0.3057$	Considers the upper tail AND finds the probability of <i>X</i> being greater than 21 or 22 ft their (b)	M1A1
	Insufficient evidence of reject H_0 / not significant / accept H_0	A correct statement ft their probability. Ignore comparisons	dM1
	No evidence to support that the probability that a customer spends at least £20 has changed	cso fully correct solution and contextual conclusion containing the words 'customer spends'	A1 (5)

(c)	$H_0: p = 0.6, H_1: p \neq 0.6$	Both hypotheses correctly stated	B1	
Way 2	$P(X \ge 27) = 0.0259, P(X \ge 28) = 0.0101$ $P(X \le 14) = 0.0132, P(X \le 14) = 0.0300$ So CR is $(X \le 14) \cup (X \ge 28)$	One of these statements leading to a critical region. ACCEPT solutions that only give the upper tail of the CR	M1A1	
	22/23 is outside of the critical region, so insufficient evidence to reject H_0 / not significant / accept H_0	A correct statement ft their CR	dM1	
	No evidence to support that the probability that a customer spends at least £20 has changed	cso fully correct solution and contextual conclusion containing the words 'customer spends'	A1 (5)	
			10	
	Question 3	Notes		
(a) M1 : Uses the binomial distribution (35, 0.6). No need to define a random variable etc				
ALTERNA	ALTERNATIVE : uses a binomial distribution $Y \sim (35, 0.4)$ AND finds $P(X < 17)$			
A1 : awrt 0.807				
(b) 1 st M1:	finds number of customers represented by 1 square (oe)		
2 nd M1: atte	2 nd M1: attempts to find number of customers that spent more than £20			
A1 : 22 or 23 customers Accept either BUT NOT BOTH				
A1:22 of 2	23 customers Accept either BUT NOT BOTH			
(c) B1: sta	23 customers Accept either BUT NOT BOTH tes the hypotheses correctly			
(c) B1: sta 1 st M1 A1:	23 customers Accept either BUT NOT BOTH tes the hypotheses correctly finds probabilities or (upper) critical region			
 A1: 22 of 2 (c) B1: state 1st M1 A1: 2nd M1: cornot enough 	23 customers Accept either BUT NOT BOTH tes the hypotheses correctly finds probabilities or (upper) critical region rect statement ft their probabilities/CR. IGNORE con on its own to gain the M1	mparisons to the significance level as	this is	

Question	Scheme	
4		
Way 1	{Let x be $P(A)$ and y be $P(B)$ }	
	<u>By independence</u> , $xy = 0.06$ and $(1-x)(1-y) = 0.51$ See notes	M1B1
	$\Rightarrow 1 + 0.06 - x - \frac{0.06}{x} = 0.51$ Eliminates y and rearranges to form a 3TQ	dM1
	$\Rightarrow 0.55x - x^2 - 0.06 = 0$	
	$\Rightarrow x = \frac{-0.55 \pm \sqrt{0.55^2 - 4(-1)(-0.06)}}{2(-1)}$ Method to solve their 3TQ	dM1A1
	$\Rightarrow x = 0.4 \text{ or } 0.15$	
	$\max \{P(\operatorname{not} A)\} = 1 - \min \{P(A)\}$ = 0.85 Maximum value of $P(\operatorname{not} A)$	A1 (6)
Way 2	{Let x be $P(A)$ and y be $P(B)$ }	
	<u>By independence</u> , $xy = 0.06$ and $(1-x)(1-y) = 0.51$ See notes	M1B1
	$\Rightarrow 1 + 0.06 - \frac{0.06}{y} - y = 0.51$ Eliminates x and rearranges to form a 3TQ	
	$\Rightarrow 0.55y - y^2 - 0.06 = 0$	
	$\Rightarrow y = \frac{-0.55 \pm \sqrt{0.55^2 - 4(-1)(-0.06)}}{2(-1)}$ Method to solve their 3TQ	dM1A1
	\Rightarrow y = 0.4 or 0.15	
	$\Rightarrow x = 0.4 \text{ or } 0.15 \qquad \qquad \text{Uses their } y \text{ to find } x$	dM1
	$\max \{P(\operatorname{not} A)\} = 1 - \min \{P(A)\}$ = 0.85 Maximum value of $P(\operatorname{not} A)$	A1 (6)
		6

<u>Way 1:</u>

 1^{st} M1 – writes down both equations. Allow the use of different symbols etc. provided it is clear what they are (or it becomes clear)

B1 - clearly states that <u>both</u> equations are implied by independence. If candidate says/implies that only one of the equations is a result of independence, award B0

 2^{nd} M1 – dependent on 1^{st} M1. Solves simultaneous equations to eliminate y (P(B)) and attempts to form a 3TQ

 3^{rd} M1 – dependent on both previous M marks. Solves the 3TQ by an appropriate method, i.e. use of the formula/factorising/completing the square.

 $1^{st} A1$ – correct values of P(A)

 $2^{nd} A1$ – correct MAXIMUM value of P(not A). Quoting both values without clearly stating which is maximum is A0.

Way 2:

 1^{st} M1 – writes down both equations. Allow the use of different symbols etc. provided it is clear what they are (or it becomes clear)

B1 - clearly states that <u>both</u> equations are implied by independence. If candidate says/implies that only one of the equations is a result of independence, award B0

 2^{nd} M1 – dependent on previous M mark. Solves the 3TQ by an appropriate method, i.e. use of the formula/factorising/completing the square.

 $1^{st} A1$ – correct values of P(A)

 3^{rd} M1 – dependent on both previous M marks. Uses their value of P(B) to find P(A)

 $2^{nd} A1$ – correct MAXIMUM value of P(not A). Quoting both values without clearly stating which is maximum is A0.

ALTERNATIVES:

Defining x as P(not A) etc. is OK – simply adapt the scheme accordingly using the guiding principles:

• not marks for finding anything to do with *B* until it is made clear that it is being used to find information about *A*

Special case: Some candidates may see the symmetry of the problem and max(not B) = max(not A). In this case, marks **CAN** be awarded for finding information about *B* provided this is made clear before.

Special case: Trial and error based solutions alone score 0 marks unless they show that the values of *A* and *B* work.

Question	Scheme	Marks		
5				
	$R(\uparrow): 2 - 3p - q = 0 \qquad \qquad \text{Uses N2L}$	M1A1		
	$R(\leftarrow): q-4-p-6 = 3(5) \Longrightarrow q-p = 25$			
	Adding the equations, Attempts to solve the equations	dM1		
	$2-3p-p=25 \Rightarrow p=$ simultaneously			
	23 Correct value of p	A1		
	$p = -\frac{1}{4}$			
	$\Rightarrow q = -\frac{23}{4} + 25 = \frac{77}{4}$ Correct value of q	A1		
		5		
	Question 5 Notes			
1 st M1 – attempts to use N2L to form ONE equation. The equation should be dimensionally correct, have the correct number of terms, but you can condone a sign error, i.e. failing to distribute a negative sign. If candidates have two equations, consider the 'best' one for this mark				
$1^{st} A1 - BOTH$ equations correct oe				
2 nd M1 – attempts to solve the equations simultaneously using any method. Dependent on the 1 st M1.				
$2^{nd} A1$ – correct value of p				
$3^{rd} A1 - con$	$3^{rd} A1$ – correct value of q			
Special case: Assuming that q = weight and $3g$ N scores no marks (other downward forces may be at work).				

Question	Scheme		Marks
6			
(a)	$a = \frac{v - u}{t} = \frac{-26}{2.5} = -10.4$	Finds the acceleration of the particle as it moves upwards	M1A1
	$\Rightarrow -2g - R = 2(-10.4)$ $\Rightarrow R = 1.2 \{N\}$	Uses N2L to find <i>R</i>	dM1A1 (4)
(b)	$v^{2} = u^{2} + 2as \Rightarrow s = \frac{0^{2} - 26^{2}}{2(-10.4)} = 32.5 \{m\}$	Uses kinematics formula	M1A1 (2)
(c)	As the particle moves upwards, <i>R</i> and the particle's weight both act downwards		
	As the particle moves downwards, <u><i>R</i> acts upwards</u> and the particle's <u>weight acts downwards</u> ; so the <u>resultant force is different</u> {compared to when the particle moves upwards}	Both points, see notes for guidance	B1B1 (2)
(d)	As the particle descends, $2g - R = 2a \Rightarrow a = \frac{2g - 1.2}{2} = 9.2$	Uses N2L to find downward acceleration ft their <i>R</i>	M1
	$s = ut + \frac{1}{2}at^2 \Longrightarrow t = \sqrt{\frac{2(32.5)}{9.2}}$	Uses kinematics formula to find <i>t</i> ft their <i>a</i> and <i>s</i>	dM1
	t = 2.575	Correct <i>t</i> ft their <i>R</i> and <i>s</i>	A1ft
 	In total, the particle spends 5.1 s in the air (2 sf)	Correct total time in the air	A1 (4)
			12

Question 6 Notes		
(a) 1 st M1 - Attempts to find the acceleration of the particle using the correct formula. Condone sign errors.		
1 st A1 – correct acceleration (ignore sign)		
2^{nd} M1 – Uses N2L to find <i>R</i> . Usual rules apply – equation must be dimensionally correct, containing the correct number of terms and condone one sign error. If candidate makes a real mess with their signs, award M0.		
2 nd A1 – correct <i>R</i> . Units not required. If candidates give a negative sign, award A0 (as this is not a magnitude)).	
(b) M1- attempts to find maximum height reached by the particle above the ground.		
A1 – correct maximum distance		
(c) $1^{st} B1$ – states which forces act on the particle on the way down and their directions. This can be obtained from a clear and labelled diagram.		
2 nd B1 – must make a clear comment that the resultant force is different.		
Do not accept "the equation of motion is different" unless qualified.		
Ignore vague references to N2L as we require a clear understanding of what has changed (the resultant force).		
Special case: if candidates write down the <u>correct</u> equation of motion of the particle as it moves up and down and makes a clear comparison between the <u>resultant forces</u> , then award the 2^{nd} B1 (even without explicitly using the term 'resultant force')		
(d) 1 st M1 – attempts to use N2L to find the downwards acceleration (if equation given in (c), then award th	e	
M1).		
2^{nd} M1 – uses the kinematics formula to find the time of the particle's descent, ft their previous values.		
1 st A1ft – correct time the particle descends ft their previous values		
$2^{nd} A1$ – correct time the particle is in the air. Cao.		

Question	Scheme	Marks	
7			
(a)	For A: $T = 3am$ <u>Correct</u> equations of motion	M1	
(i/ii)	For $B: 5mg - T = 5am$		
	$\Rightarrow a = \frac{5g}{8} \{m s^{-2}\}$ Correct acceleration and tension in terms of <i>m</i> and <i>g</i>	A1A1	
	$\Rightarrow T = \frac{15mg}{8} \{N\}$	(3)	
(b)	$\sqrt{\left(\frac{15mg}{8}\right)^2 + \left(\frac{15mg}{8}\right)^2} = \frac{15mg\sqrt{2}}{8}$ Uses Pythagoras' or an equivalent method	M1A1	
	Direction is at <u>45 degrees away</u> from the table Correct direction	B1 (3)	
		6	
	Question 7 Notes		
(a) 1 st M1 -	- both equations of motions correct		
A1; A1 – correct tension; correct acceleration in terms of m and g			
(b) $1^{st} M1$ – attempts to find the resultant force on the pulley			
$1^{st} A1$ – correct resultant force on the pulley			
B1 – correc	et direction of the force. Can be illustrated by a diagram.		

Question	Scheme		Marks
8			
	$2^{2} - 4k(4 - k) < 0$ $\Rightarrow 4k^{2} - 16k + 4 < 0$ For	orms an inequality and attempts to solve it	M1 dM1
	$\Rightarrow 2 - \sqrt{3} < k < 2 + \sqrt{3} \Rightarrow \max(k) = 3$	Correct maximum value of k	A1
	distance travelled = $\int_{2}^{3} (3t^2 + 2t + 1) dt = [t^3 + t^2 + t]_{2}^{3}$	See notes for criteria	M1 A1ft
	$= (3^{3} + 3^{2} + 3) - (2^{3} + 2^{2} + 2)$ = 25 {m}	ostitutes the limits in to find the correct total distance travelled	dM1 A1
			7
	Question 8 Not	es	
 1st M1 – uses the discriminant to find an inequality in k. 2nd M1 – dependent on the 1st M1. Uses a correct method to solve their inequality in k. 1st A1 – correct maximum value of k. 3rd M1 – Award the mark for one of the following: integrates the velocity expression with respect to time with k = 3. Ignore limits. integrates the velocity expression with respect to time with their suitable* value of k. Ignore limits. integrates the velocity expression with respect to time in terms of k and substitutes a suitable value of k in at a later stage. Ignore limits. 			
$4^{\text{th}} \text{A1} - \text{correct integration ft their expression. Must have the 3rd M1 for this mark.}$			

 5^{th} M1 – uses the correct limits and substitutes these in the right way around.

5th A1 – correct total distance travelled.

*A value of *k* is suitable if

- it is an integer
- it comes from a calculation that uses the fact that the particle is never at rest
- is clearly a maximum value from their calculation, i.e. do not accept a value of k if their calculation/set suggests that the value is actually a minimum (this could happen if candidates make a sign error)