Surname								
Other Names								
Candidate Signature								
Centre Number				Candidate Number				
Examiner Comments						Tota	al Mar	ks
	'							

MATHEMATICS

AS PAPER 1

December Mock Exam (Edexcel Version)

Time allowed: 2 hours

Instructions to candidates:

- In the boxes above, write your centre number, candidate number, your surname, other names and signature.
- · Answer ALL of the questions.
- · You must write your answer for each question in the spaces provided.
- You may use a calculator.

Information to candidates:

- · Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 14 questions in this question paper. The total mark for this paper is 100.

Advice to candidates:

- · You should ensure your answers to parts of the question are clearly labelled.
- · You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.

AS/P1/D17
© 2017 crashMATHS Ltd.

- 1 The equation $kx^2 + (3-k)x 4 = 0$ has two equal roots. Find the possible values of the constant k.
- 2 Solve the equation

$$a^{\frac{1}{2}} + \sqrt{4a} = 3 \tag{3}$$

3 Figure 1 shows a sketch of the curve with equation y = f(x).

On separate axes, sketch the curves with equation

(i)
$$y = \frac{1}{2}f(x)$$

(ii)
$$y = f(-x)$$

On each sketch, you should show clearly the coordinates of any points where the curve crosses or meets the coordinate axes.

4 Three vectors \mathbf{p} , \mathbf{q} and \mathbf{r} are defined such that

$$\mathbf{p} = 12\mathbf{i} - a\mathbf{j}$$

$$\mathbf{q} = 6\mathbf{i} + (9 - 5a)\mathbf{j}$$

$$\mathbf{r} = \mathbf{q} - \mathbf{p}$$

where i and j are perpendicular unit vectors.

Given that \mathbf{p} and \mathbf{q} are parallel vectors,

(a) find the value of the constant a. (3)

(b) Find
$$|\mathbf{r}|$$
.

5 The curve C has the equation y = f(x), where $f(x) = px - 18\sqrt{x}$, $x \ge 0$, and p is a constant.

Figure 2 shows a sketch of the curve *C*.

Figure 2

The region R, shown shaded in **Figure 2**, is bounded by the curve, the x axis and the line x = 4. Given that the **area** of the region R is 48 units²,

(a) find the value of
$$p$$
. (5)

- (b) Use calculus to find the coordinates of the minimum point on the curve C. (4)
- (c) Using further differentiation, verify that the point found in (b) is a minimum. (3)

6

Figure 3

The shape ABCDA, as shown in **Figure 3**, consists of a triangle BCD joined to a sector ABD of a circle with centre D.

Angle $DBC = 53^{\circ}$, angle $BCD = 50^{\circ}$ and BC = 10 cm.

(a) Find the length of
$$AD$$
. (2)

- (b) Find the area of the shaded region R. (3)
- (c) Calculate the perimeter of the shape ABCDA. Give your answer to one decimal place. (4)

7 (a) In descending powers of x, find the first four terms in the binomial expansion of

$$\left(2-\frac{1}{\sqrt{x}}\right)^8$$

giving each term in its simplest form.

(5)

(b) Bernoulli's inequality states that

$$(1+x)^r \ge 1 + rx$$

for all integers $r \ge 0$ and every real number $x \ge -1$.

- (i) By using the binomial theorem on $(1+x)^r$, prove Bernoulli's inequality for x > 0.
- (ii) Verify Bernoulli's inequality for the case x = 0. (1)
- (iii) Use a counter-example to show that Bernoulli's inequality is not valid for x < -1. (2)
- 8 (i) The function f is defined such that

$$f(x) = ax^b$$

where a and b are constants.

Given that the curve with equation y = f(x) passes through the points (4, 5) and (8, 12), find the values of a and b.

(ii) The table below shows the atomic number n and the melting point (y degrees Celsius) for some alkali metals.

Metal	Lithium	Sodium	Potassium	Rubidium	Caesium
n	3	11	19	37	55
у	180.5	97.8	63.7	38.9	28.5

A graph of ln(y) against ln(n) is produced using these data. A line of best fit is then drawn for these data and it passes through the points (5, 2.79) and (45, -22.77).

(a) Express
$$y$$
 in terms of n . (4)

Francium is also an alkali metal. The atomic number of Francium is 87.

- (b) Using your answer to (a), estimate the melting point of Francium. (2)
- (c) Comment on the reliability of your estimate in (b). (1)
- **9** The curve C has the equation y = f(x), where

$$f(x) = -2x^3 + 9x^2 - x - 12$$

(a) Show that the curve C crosses the x axis when x = 4.

(b) Express f(x) as a product of three linear factors. (4)

(c) Sketch the curve with equation y = f(x).

On your sketch, show clearly the coordinates of any points where the curve C crosses or meets the coordinate axes.

(d) Find all the solutions to the equation

$$-2(x-4)^3 + 9(4-x)^2 - (x-4) - 12 = 0$$

(2)

10 The curve C has the equation y = g(x) and is defined such that

$$\frac{dy}{dx} = \frac{16x^3 - 9x}{x(3 - 4x)}, x > 1$$

Given that the curve passes through the point (2, -12), find the values of a, b and c such that

$$g(x) = a(x-b)^2 + c$$
 (7)

11 The straight line *l* is perpendicular to the line qx = -2y + 4, where *q* is a constant.

(a) Find, in terms of
$$q$$
, the gradient of the line l . (2)

The curve *C* has the equation $y = \frac{1}{x^2} + \frac{3\sqrt{x}}{p}$, where *p* is a constant and *x* is positive. The tangent to the curve *C* at x = 1 is parallel to *l*.

(b) Express
$$p$$
 in terms of q . (5)

12 (a) Solve the equation $\cos \theta = -0.3$ for $-180^{\circ} \le \theta \le 360^{\circ}$. (3)

(b) (i) Prove that
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
. (1)

(ii) Hence, show that

$$\frac{1 + \sin x \cos x}{\cos^3 x - \sin^3 x} + \frac{1}{\cos x + \sin x} = \frac{2 \cos x}{\cos^2 x - \sin^2 x}$$
(3)

(iii) Deduce that

$$\frac{1 + \sin x \cos x}{\cos^3 x - \sin^3 x} + \frac{1}{\cos x + \sin x} + \frac{\sin^2 x - 2\cos x - 1}{\cos^2 x - \sin^2 x} = \frac{1}{\tan^2 x - 1}$$
(3)

13 (a) Prove, from first principles, that

$$\frac{d}{dx}(x^3) = 3x^2 \tag{3}$$

(b) By considering derivatives, or otherwise, evaluate

$$\lim_{h \to 0} \frac{\left(x+h\right)^3 - x^3}{\sqrt{x+h} - \sqrt{x}}$$

(3)