Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 5: Algebra and Functions

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
1	Uses $\alpha + \beta = -\frac{b}{a}$ to write $4p = -6$	M1	1.1b	TBC	
	Solves to find $p = -\frac{3}{2}$	A1	1.1b		
	Uses $\alpha\beta = \frac{c}{a}$ to write $3p^2 = \frac{30}{k}$	M1	1.1b		
	Solves to find $k = \frac{40}{9}$	A1	1.1b		
		(4)			
				(4 marks)	
Notes					

Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 5: Algebra and Functions

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
2a	Uses $\alpha + \beta = -\frac{b}{a}$ to write $2\operatorname{Re}(\alpha) = -\frac{m}{5}$	M1	2.2a	TBC		
	Solves to find $m = -40$	A1	1.1b			
		(2)				
b	Uses $\alpha\beta = \frac{c}{a}$ to write $(\operatorname{Re}(\alpha))^2 + (\operatorname{Im}(\alpha))^2 = \frac{n}{5}$	M1	2.2a			
	Solves to find $n = 80$ and concludes $n > 80$	A1	1.1b			
		(2)				
				(4 marks)		
Notes						

Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 5: Algebra and Functions

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3 a	States $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{k}{5}$, $\alpha\beta\gamma = 10$ and $\alpha + \beta + \gamma = \frac{11}{5}$	B1	1.1b	TBC
		(1)		
b	Deduces that $\alpha^* = 1 - 7i$ is a root.	M1	2.2a	
	Finds $\alpha \alpha^* = (1+7i)(1-7i) = 50$	M1	1.1b	
	Uses $\alpha\beta\gamma = 10 \Rightarrow \alpha\alpha * \gamma = 10$ to state $\gamma = \frac{1}{5}$	A1	1.1b	
		(3)		
с	Uses $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{k}{5}$ to write	M1	2.2a	
	$50 + \frac{1}{5}(1 - 7i) + \frac{1}{5}(1 + 7i) = \frac{k}{5}$			
	Solves to find $k = 252$	A1	1.1b	
		(2)		
				(6 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
4a	Multiplies the three given roots together and sets the result equal to 52 or -52. For example $(\alpha)\left(\frac{1}{\alpha}\right)\left(\alpha + \frac{13}{\alpha} + 46\right) = -52$ or $(\alpha)\left(\frac{1}{\alpha}\right)\left(\alpha + \frac{13}{\alpha} + 46\right) = 52$ is seen.	M1	1.1b	ТВС	
	Correctly uses $(\alpha)\left(\frac{1}{\alpha}\right)\left(\alpha + \frac{13}{\alpha} + 46\right) = 52$ to find $\alpha^2 - 6\alpha + 13 = 0$	A1	1.1b		
	Attempts to solve this quadratic using either completing the square or the quadratic formula.	M1	3.1a		
	Correctly finds $\alpha = 3 \pm 2i$	A1	1.1b		
	States that the roots of $f(z) = 0$ are $3+2i$, $3-2i$, 4	A1	2.2a		
		(5)			
b	Applies the process of finding $-\sum$ (of their three roots found in part (a)) to attempt to find <i>m</i> .	M1	3.1a		
	Correctly finds $m = -10$	A1	1.1b		
	Applies the process of using the pair sums to find the value of <i>n</i> . For example, $13 + 6\gamma = n$ is seen.	M1	3.1a		
	Correctly finds $n = 37$	A1	1.1b		
		(4)			
(9 marks)					
	Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
5a	States or implies that $\gamma = 2 - 4i$ is a root.	M1	2.2a	TBC	
	Uses $\alpha + \beta + \gamma + \delta = \alpha + \beta + 4 = -\frac{-24}{4}$ to write $\alpha + \beta - 2 = 0$	A1	3.1a		
	$\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta$ Uses $= \alpha\beta(2+4i) + \alpha\beta(2-4i) + \alpha(20) + \beta(20) = -\frac{-276}{4}$ to write $4\alpha\beta + 20(\alpha + \beta) = 69$	A1	3.1a		
		(3)			
b	Makes an attempt to solve for α and β , for example $\alpha = 2 - \beta$ is substituted into $4\alpha\beta + 20(\alpha + \beta) = 69$	M1	2.2a		
	Forms a quadratic in α or β : $4\alpha^2 - 8\alpha + 29 = 0$ or $4\beta^2 - 8\beta + 29 = 0$ or equivalent is seen and attempts to solve the quadratic.	M1	3.1a		
	States either $\alpha = 1 + \frac{5}{2}i$ or $\beta = 1 + \frac{5}{2}i$	A1	1.1b		
	States the roots of the equation are: 2+4 <i>i</i> , 2-4 <i>i</i> , $1+\frac{5}{2}i$, $1-\frac{5}{2}i$	A1	2.2a		
		(4)			
С	Makes an attempt to use $\alpha\beta\gamma\delta = \frac{n}{a}$ to find <i>n</i>	M1	3.1a		
	Finds $n = 580$	A1	1.1b		
		(2)			
(9 marks					
	Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
6a	States $\alpha + \beta + \gamma = -\frac{-6}{3} = 2$, $\alpha\beta + \beta\gamma + \gamma\alpha = -\frac{10}{3}$ and	B1	1.1b	TBC	
	$\alpha\beta\gamma = -\frac{-20}{3} = \frac{20}{3}$				
		(1)			
bi	Makes an attempt to use $\alpha^4 \beta^4 \gamma^4 = (\alpha \beta \gamma)^4$	M1	3.1a		
	Finds $\alpha^4 \beta^4 \gamma^4 = (\alpha \beta \gamma)^4 = \left(\frac{20}{3}\right)^4 = \frac{160000}{81}$	A1	1.1b		
		(2)			
bii	Makes an attempt to use $\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$	M1	3.1a		
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ Finds $= (2)^{2} - 2\left(-\frac{10}{3}\right) = \frac{32}{3}$	A1	1.1b		
		(2)			
biii	Makes an attempt to multiply out $(2-\alpha)(2-\beta)(2-\gamma)$	M1	1.1b		
	Finds or states $\frac{(2-\alpha)(2-\beta)(2-\gamma)}{=8-4(\alpha+\beta+\gamma)+2(\alpha\beta+\beta\gamma+\gamma\alpha)-\alpha\beta\gamma}$	M1	3.1a		
	Finds $(2-\alpha)(2-\beta)(2-\gamma) = 8-4(2)+2\left(-\frac{10}{3}\right)-\frac{20}{3} = -\frac{40}{3}$	A1	1.1b		
		(3)			
(9 marks)					
	Notes				

Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 5: Algebra and Functions

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
7	States $w = 2x - 1 \Longrightarrow x = \frac{w + 1}{2}$	B1	3.1a	TBC		
	States $2\left(\frac{w+1}{2}\right)^3 - 4\left(\frac{w+1}{2}\right)^2 + 6\left(\frac{w+1}{2}\right) - 9 = 0$	M1	3.1a			
	Makes an attempt to manipulate the equation into the form $aw^3 + bw^2 + cw + d = 0$	M1	1.1b			
	At least two of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> are correct.	A1	1.1b			
	Fully correct final equation: $w^3 - w^2 + 7w - 27 = 0$	A1	1.1b			
		(5)				
				(5 marks)		
Notes						
7: Acce	pt an equation that is a multiple of $w^3 - w^2 + 7w - 27 = 0$, most like	$x = 1 \frac{2}{w^3}$	$-2w^{2} +$	14w-54=0.		
See also	See also alternative method for first three marks on next page.					

ALTERNATIVE METHOD FOR FIRST THREE MARKS

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7	States $\alpha + \beta + \gamma = 2$, $\alpha\beta + \beta\gamma + \gamma\alpha = 3$ and $\alpha\beta\gamma = \frac{9}{2}$	B 1	3.1a	
	Sum of roots: $ \frac{(2\alpha - 1) + (2\beta - 1) + (2\gamma - 1)}{= 2(\alpha + \beta + \gamma) - 3 = 2(2) - 3 = 1} $ Pair sum: $ \frac{(2\alpha - 1)(2\beta - 1) + (2\beta - 1)(2\gamma - 1) + (2\gamma - 1)(2\alpha - 1)}{= 4(\alpha\beta + \beta\gamma + \gamma\alpha) - 4(\alpha + \beta + \gamma) + 3} $ $ = 4(3) - 4(2) + 3 = 7 $ $ \frac{(2\alpha - 1)(2\beta - 1)(2\gamma - 1)}{(2\gamma - 1)} $ Product: $ = 8(\alpha\beta\gamma) - 4(\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) - 1 $ $ = 8\left(\frac{9}{2}\right) - 4(3) + 2(2) - 1 = 27 $	M1	3.1a	
	Applies: $w^{3} - (\text{their sum roots})w^{2} + (\text{their pair sum})w - \text{their product} = 0$	M1	1.1b	

Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 5: Algebra and Functions

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
8	States $w = 2x \Longrightarrow x = \frac{w}{2}$	B1	3.1a	TBC	
	States $2\left(\frac{w}{2}\right)^4 - 6\left(\frac{w}{2}\right)^2 + 16\left(\frac{w}{2}\right) - 1 = 0$	M1	3.1a		
	Makes an attempt to manipulate the equation into the form $pw^4 + qw^3 + rw^2 + sw + t = 0$.	M1	1.1b		
	At least two of p , q , r , s and t are correct.	A1	1.1b		
	Fully correct final equation: $w^4 - 12w^2 + 64w - 8 = 0$	A1	1.1b		
		(5)			
				(5 marks)	
Notes					
See also	alternative method for first three marks on next page.				

ALTERNATIVE METHOD FOR FIRST THREE MARKS

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
8	States $\alpha + \beta + \gamma + \delta = 0$, $\alpha\beta + \beta\gamma + \gamma\alpha + \gamma\delta + \alpha\delta + \beta\delta = -3$, $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -8$ and $\alpha\beta\gamma\delta = -\frac{1}{2}$	B1	3.1a	TBC
	Sum of roots: $2\alpha + 2\beta + 2\gamma + 2\delta = 0$ $(2\alpha)(2\beta) + (2\beta)(2\gamma) + (2\gamma)(2\alpha) +$ Pair sum: $+(2\gamma)(2\delta) + (2\alpha)(2\delta) + (2\beta)(2\delta)$ $= 4(\alpha\beta + \beta\gamma + \gamma\alpha + \gamma\delta + \alpha\delta + \beta\delta)$ = 4(-3) = -12 $(2\alpha)(2\beta)(2\gamma) + (2\alpha)(2\beta)(2\delta) +$ Triple sum: $+(2\alpha)(2\gamma)(2\delta) + (2\beta)(2\gamma)(2\delta)$ $= 8(\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta)$ = 8(-8) = -64 Product: $(2\alpha)(2\beta)(2\gamma)2(\delta) = 16(\alpha\beta\gamma\delta) = 16\left(-\frac{1}{2}\right) = -8$	M1	3.1a	
	Applies: $w^4 - (\text{their sum roots})w^3 + (\text{their pair sum})w^2$ - (their triple sum)w + their product = 0	M1	1.1b	