- 1 The equation $kx^2 + 6kx + 30 = 0$ has roots of the form p and 3p. Find the values of k and p. (4 marks)
- 2 The equation $5x^2 + mx + n = 0$, where *m* and *n* are real constants, has roots α and α^* .
 - **a** Given that $\operatorname{Re}(\alpha) = 4$, find the value of *m*. (2 marks)
 - **b** Given that $Im(\alpha) \neq 0$, find the range of possible values of *n*. (2 marks)
- 3 The cubic equation $5z^3 11z^2 + kz 50 = 0$ has roots α, β and γ .
 - **a** Write down the values of $\alpha\beta + \beta\gamma + \gamma\alpha$, $\alpha\beta\gamma$ and $\alpha + \beta + \gamma$.(1 mark)**b** Given that $\alpha = 1 + 7i$, and $\gamma \in \mathbb{R}$ find the value of γ .(3 marks)
 - c Find the value of k.(2 marks)
- 4 $f(z) = z^3 + mz^2 + nz 52$

Given that the roots of the cubic equation f(z) = 0 are α , $\frac{1}{\alpha}$ and $\alpha + \frac{13}{\alpha} + 46$ find the

- **a** roots of the equation f(z) = 0 (5 marks)
- **b** values of m and n.
- 5 The equation $4x^4 24x^3 + mx^2 276x + n = 0$, $x \in \mathbb{C}$, $m, n \in \mathbb{R}$ has roots α, β, γ and δ . Given that $\delta = 2 + 4i$ and $\gamma = \delta^*$
 - **a** show that $\alpha + \beta 2 = 0$ and $4\alpha\beta + 20(\alpha + \beta) = 69$ (3 marks)
 - b hence find all the roots of the quartic equation (4 marks)
 - $\mathbf{c} \quad \text{find the value of } n. \tag{2 marks}$

6 The roots of the equation $3x^3 - 6x^2 - 10x - 20 = 0$ are α, β and γ .

- **a** Write down the values of $\alpha\beta + \beta\gamma + \lambda\alpha$, $\alpha\beta\lambda$ and $\alpha + \beta + \gamma$. (1 mark)
- **b** Hence find the exact value of
 - i $\alpha^4 \beta^4 \gamma^4$ (2 marks)

ii
$$\alpha^2 + \beta^2 + \gamma^2$$
 (2 marks)

iii
$$(2-\alpha)(2-\beta)(2-\gamma)$$
 (3 marks)

Pearson Edexcel AS and A level Further Mathematics

(4 marks)

7 The cubic equation $2x^3 - 4x^2 + 6x - 9 = 0$ has roots α, β and γ . Without solving the equation, find a cubic equation whose roots are $(2\alpha - 1)$, $(2\beta - 1)$ and $(2\gamma - 1)$, giving your answer in the form $aw^3 + bw^2 + cw + d = 0$ where a, b, c and d are integers to be found.

(5 marks)

8 The quartic equation $2x^4 - 6x^2 + 16x - 1 = 0$ has roots α, β, γ and δ . Without solving the equation, find a quartic equation whose roots are $2\alpha, 2\beta, 2\gamma$ and 2δ , giving your answer in the form $pw^4 + qw^3 + rw^2 + sw + t = 0$ where p, q, r, s and t are integers to be found.

(5 marks)

Pearson Edexcel AS and A level Further Mathematics