Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	Let $n = 1$	B1	2.2a	TBC
	$\sum_{r=1}^{1} r(r+1) = 2 \text{ and } \frac{1}{3}n(n+1)(n+2) = \frac{1}{3}(1)(2)(3) = 2$			
	Therefore, the statement is true for $n = 1$			
	Assume general statement is true for $n = k$	M1	2.4	
	So assume, $\sum_{r=1}^{k} r(r+1) = \frac{1}{3}k(k+1)(k+2)$			
	Begins to build an expression for $n = k + 1$	M1	2.1	
	So, $\sum_{r=1}^{k+1} r(r+1) = \sum_{r=1}^{k} r(r+1) + (k+1)(k+2)$			
	Therefore, $\sum_{r=1}^{k+1} r(r+1) = \frac{1}{3}k(k+1)(k+2) + (k+1)(k+2)$			
	Factorises and arrives at the intended expression.	A1	1.1b	
	$\frac{1}{3}(k+1)(k+2)[k+3]$			
	Demonstrates an understanding of the process of mathematical induction	A1	2.4	
	Then the general statement is true for $n = k + 1$			
	As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$			
		(5)		
1b	Makes an attempt to substitute '2n - 1' into their expression from 1a $\sum_{n=1}^{2n-1} r(r+1) = \frac{1}{3}(2n-1)(2n-1+1)(2n-1+2)$ oe	M1	1.1b	TBC
	Simplifies to obtain $\frac{1}{3}(2n-1)(2n)(2n+1) = \frac{2}{3}n(4n^2-1)$	A1	1.1b	
		(2)		
				(7 marks)
	Notes			

$\begin{array}{ c c c c c c } \hline 2 & n=1, \sum_{r=1}^{L} \frac{r-1}{r!} = 0 \text{ and } \frac{n!-1}{n!} = \frac{1!-1}{1!} = 0 & \text{B1} & 2.2a & \text{TBC} \\ \hline \text{Assume the general statement is time for } n=k & \text{M1} & 2.4 \\ \text{So assume } \sum_{r=1}^{L} \frac{r-1}{r!} = \frac{k!-1}{k!} \text{ is true.} & \text{M1} & 2.4 \\ \hline \text{So assume } \sum_{r=1}^{L} \frac{r-1}{r!} = \frac{k!-1}{k!} \text{ is true.} & \text{M1} & 2.1 \\ \hline \text{So, } \sum_{r=1}^{k!} \frac{r-1}{r!} = \sum_{r=1}^{r} \frac{r-1}{r!} + \frac{k+1-1}{(k+1)!} & \text{M1} & 2.1 \\ \hline \text{Therefore } \sum_{r=1}^{k!} \frac{r-1}{r!} = \frac{k!-1}{k!} + \frac{k+1-1}{(k+1)!} & \text{M1} & 1.1b \\ \hline \text{Multiplies } \frac{k!-1}{k!} \text{ by } \frac{k+1}{k+1} \text{ to obtain a common denominator,} & \text{M1} & 1.1b \\ \hline \frac{(k!-1)(k+1)}{k!(k+1)} + \frac{(k+1)!-(k+1)}{(k+1)!} & (k+1)-1 = \frac{(k+1)!-1}{(k+1)!} & \text{M1} & 1.1b \\ \hline \text{Demonstrates an understanding of the process of mathematical induction,} & \text{Then the general result has been shown to be true for n=1, then the general result is true for all n \in \mathbb{Z}^{+1} & (6) & \end{array}$	Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
So assume $\sum_{r=1}^{k} \frac{r-1}{r!} = \frac{k!-1}{k!}$ is true. Begins to build an expression for $n = k + 1$ So, $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \sum_{r=1}^{r} \frac{r-1}{r} + \frac{k+1-1}{(k+1)!}$ Therefore $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \frac{k!-1}{k!} + \frac{k+1-1}{(k+1)!}$ Multiplies $\frac{k!-1}{k!}$ by $\frac{k+1}{k+1}$ to obtain a common denominator, $\frac{(k!-1)(k+1)}{k!(k+1)} + \frac{(k+1)!-(k+1)}{(k+1)!}$ Attempts to simplify: $\frac{(k+1)!-(k+1)}{(k+1)!} + \frac{(k+1)-1}{(k+1)!} = \frac{(k+1)!-1}{(k+1)!}$ Demonstrates an understanding of the process of mathematical induction. Then the general statement is true for $n = k+1$. As the general result has been shown to be true for $n = 1$, then the general result is true for $a = k+1$. (6) (6 marks)	2	$n=1$, $\sum_{r=1}^{1} \frac{r-1}{r!} = 0$ and $\frac{n!-1}{n!} = \frac{1!-1}{1!} = 0$	B1	2.2a	TBC
Begins to build an expression for $n = k + 1$ So, $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \sum_{r=1}^{r} \frac{r-1}{r} + \frac{k+1-1}{(k+1)!}$ Therefore $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \frac{k!-1}{k!} + \frac{k+1-1}{(k+1)!}$ Multiplies $\frac{k!-1}{k!}$ by $\frac{k+1}{k+1}$ to obtain a common denominator, $\frac{(k!-1)(k+1)}{k!(k+1)} + \frac{(k+1)!-(k+1)}{(k+1)!}$ Attempts to simplify: $\frac{(k+1)!-(k+1)}{(k+1)!} + \frac{(k+1)-1}{(k+1)!} = \frac{(k+1)!-1}{(k+1)!}$ M1 1.1b Demonstrates an understanding of the process of mathematical induction, Then the general statement is true for $n = k + 1$. As the general result has been shown to be true for $n = 1$, then the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ (6) (6)		Assume the general statement is time for $n = k$	M1	2.4	
So, $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \sum_{r=1}^{r} \frac{r-1}{r} + \frac{k+1-1}{(k+1)!}$ Therefore $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \frac{k!-1}{k!} + \frac{k+1-1}{(k+1)!}$ Multiplies $\frac{k!-1}{k!}$ by $\frac{k+1}{k+1}$ to obtain a common denominator, $\frac{(k!-1)(k+1)}{k!(k+1)} + \frac{(k+1)!-(k+1)}{(k+1)!}$ Attempts to simplify: $\frac{(k+1)!-(k+1)}{(k+1)!} + \frac{(k+1)-1}{(k+1)!} = \frac{(k+1)!-1}{(k+1)!}$ MI 1.1b Demonstrates an understanding of the process of mathematical induction, Then the general statement is true for $n = k+1$. As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ (6)		So assume $\sum_{r=1}^{k} \frac{r-1}{r!} = \frac{k!-1}{k!}$ is true.			
Therefore $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \frac{k!-1}{k!} + \frac{k+1-1}{(k+1)!}$ MI1.1bMultiplies $\frac{k!-1}{k!}$ by $\frac{k+1}{k+1}$ to obtain a common denominator,MI1.1b $(\frac{(k!-1)(k+1)}{k!(k+1)} + \frac{(k+1)!-(k+1)}{(k+1)!}$ $(\frac{(k+1)!-(k+1)}{k!(k+1)} + \frac{(k+1)-1}{(k+1)!} = \frac{(k+1)!-1}{(k+1)!}$ MI1.1bAttempts to simplify: $\frac{(k+1)!-(k+1)}{(k+1)!} + \frac{(k+1)-1}{(k+1)!} = \frac{(k+1)!-1}{(k+1)!}$ MI1.1bDemonstrates an understanding of the process of mathematical induction,A12.4Then the general statement is true for $n = k + 1$.As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ (6)(6)		Begins to build an expression for $n = k + 1$	M1	2.1	
Multiplies $\frac{k!-1}{k!}$ by $\frac{k+1}{k+1}$ to obtain a common denominator,M11.1b $\frac{(k!-1)(k+1)}{k!(k+1)} + \frac{(k+1)!-(k+1)}{(k+1)!}$ $(k+1)!-1$ M11.1bAttempts to simplify: $\frac{(k+1)!-(k+1)}{(k+1)!} + \frac{(k+1)-1}{(k+1)!} = \frac{(k+1)!-1}{(k+1)!}$ M11.1bDemonstrates an understanding of the process of mathematical induction,A12.4Then the general statement is true for $n = k + 1$. As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ (6)(6 marks)		So, $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \sum_{r=1}^{r} \frac{r-1}{r} + \frac{k+1-1}{(k+1)!}$			
Multiplies $\frac{k!}{k!}$ by $\frac{k+1}{k+1}$ to obtain a common denominator, $\frac{(k!-1)(k+1)}{k!(k+1)} + \frac{(k+1)!-(k+1)}{(k+1)!}$ Attempts to simplify: $\frac{(k+1)!-(k+1)}{(k+1)!} + \frac{(k+1)-1}{(k+1)!} = \frac{(k+1)!-1}{(k+1)!}$ M11.1bDemonstrates an understanding of the process of mathematical induction,Then the general statement is true for $n = k + 1$.As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ (6)(6)		Therefore $\sum_{r=1}^{k+1} \frac{r-1}{r!} = \frac{k!-1}{k!} + \frac{k+1-1}{(k+1)!}$			
Attempts to simplify: $\frac{(k+1)!-(k+1)}{(k+1)!} + \frac{(k+1)-1}{(k+1)!} = \frac{(k+1)!-1}{(k+1)!}$ M11.1bDemonstrates an understanding of the process of mathematical induction, Then the general statement is true for $n = k + 1$. As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ M11.1b(6)(6)		Multiplies $\frac{k!-1}{k!}$ by $\frac{k+1}{k+1}$ to obtain a common denominator,	M1	1.1b	
Attempts to simplify: $(x + 1)!$ $(k + 1)!$ $= (x + 1)!$ $(k + 1)!$ Demonstrates an understanding of the process of mathematical induction,A12.4Then the general statement is true for $n = k + 1$. As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ (6)(6 marks)		$\frac{(k!-1)(k+1)}{k!(k+1)} + \frac{(k+1)!-(k+1)}{(k+1)!}$			
induction, Then the general statement is true for $n = k + 1$. As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ (6) (6 marks)		Attempts to simplify: $\frac{(k+1)! - (k+1)}{(k+1)!} + \frac{(k+1) - 1}{(k+1)!} = \frac{(k+1)! - 1}{(k+1)!}$	M1	1.1b	
As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in Z^+$ (6)(6 marks)		0 1	A1	2.4	
then the general result is true for all $n \in Z^+$ (6) (6) (6 marks)					
(6 marks)		-			
			(6)		
Notes					(6 marks)
		Notes			

Further Maths Core Pure (AS/Year 1) Unit Test 6: Proof

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3	Let $f(n) = 5^{2n} + 11$, where $n \in Z^+$	B1	2.2a	TBC
	Therefore, $f(1) = 5^{2n} + 11 = 5^2 + 11 = 36$. 36 is divisible by 6			
	Assume statement is true for $n = k$	M1	2.4	
	So, assume $f(k) = 5^{2k} + 11$ is divisible by 6			
	Begins to build an expression for $n = k + 1$: $f(k + 1) = 5^{2(k+1)} + 11$	M1	2.1	
	Use properties of laws of indices in an attempt to simplify,	M1	1.1b	
	$f(k+1) = 5^{2k+2} + 11 = 5^{2k} * 5^2 + 11 = 25(5^{2k}) + 11$			
	Recognises the need to find $f(k+1)-f(k)$ and simplifies,	A1	1.1b	
	$f(k+1) - f(k) = 25(5^{2k}) + 11 - (5^{2k} + 11) = 24(5^{2k})$			
	$f(k+1) - f(k) = 6 \times (4 \times 5^{2k})$			
	Therefore, $f(n)$ is divisble by 6 when $n = k + 1$	B1	2.4	
	Demonstrates an understanding of the process of mathematical induction,	A1	2.4	
	If $f(n)$ is divisible by 6 when $n = k$, then it has been shown that $f(n)$ is also divisible by 6 when $n = k + 1$			
	As $f(n)$ is divisible by 6 when $n = 1$, $f(n)$ is also divisible by 6 for all $n \ge 1$ and $n \in Z^+$ by mathematical induction			
		(7)		
				(7 marks)
	Notes			

Draft Version 1

Mark scheme

Further Maths Core Pure (AS/Year 1) Unit Test 6: Proof

2	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
ļ	Let $f(n) = 11^n - 7^n$, where $n \in Z^+$	B1	2.2a	TBC
	Therefore, $f(1) = 11^1 - 7^1 = 11 - 7 = 4$			
	4 is divisible by 4			
	Assume statement is true for $n = k$	M1	2.4	
	So,assume $f(k) = 11^k - 7^k$ is divisible by 4			
	Begins to build an expression for $n = k + 1$,	M1	2.1	
	$f(k+1) = 11^{k+1} - 7^{k+1} = 11(11^k) - 7(7^k)$			
	Recognises the need to find $f(k+1)-f(k)$ and simplifies,	M1	1.1b	
	$f(k+1) - f(k) = 11(11^{k}) - 7(7^{k}) - (11^{k} - 7^{k})$			
	$=10(11^k)-6(7^k)$			
	Use expression for $f(k+1) - f(k)$ to find an expression for $f(k+1)$	A1	1.1b	
	Therefore, $f(k+1) = f(k) + 10(11^k) - 6(7^k)$			
	$= f(k) + 6(11^{k}) - 6(7^{k}) + 4(11^{k})$			
	$= f(k) + 6f(k) + 4(11^{k})$			
	$=7f(k)+4(11^{k})$			
	Therefore, $f(n)$ is divisible by 4 when $n = k + 1$	B1	2.4	
	Demonstrates an understanding of the process of mathematical induction: If $f(n)$ is divisible by 4 when $n = k$, then it has been shown that $f(n)$ is also divisible by 4 when $n = k + 1$. As $f(n)$ is divisible by 4 when $n = 1$, $f(n)$ is also divisible by 4 for all $n \ge 1$	A1	2.4	
	and $n \in Z^+$ by mathematical induction.			
		(7)		
	·			(7 marks

Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
Let $f(n) = n^3 + 9n^2 + 5n$, where $n \in Z^+$	B1	2.2a	TBC
Therefore, $f(1) = (1)^3 + 5(1) + 9(1)^2 = 15$ 15 is divisible by 3			
Assume statement is true for $n = k$ So, assume $f(k) = k^3 + 9k^2 + 5k$ is divisible by 3	M1	2.4	
Begins to build an expression for $n = k + 1$, $f(k + 1) = (k + 1)^3 + 9(k + 1)^2 + 5(k + 1)$ $= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 5k + 5$ $= k^3 + 12k^2 + 26k + 15$	M1	2.1	
Recognises the need to find $f(k+1) - f(k)$ and simplifies, $f(k+1) - f(k) = (k^3 + 12k^2 + 26k + 15) - (k^3 + 9k^2 + 5k)$ $= 3k^2 + 21k + 15$	M1	1.1b	
Use expression for $f(k+1) - f(k)$ to find an expression for f(k+1), $f(k+1) = f(k) + 3k^2 + 21k + 15$ $f(k+1) = f(k) + 3(k^2 + 7k + 2)$	A1	1.1b	
Therefore $f(n)$ is divisible by 3 when $n = k + 1$	B1	2.4	
Demonstrates an understanding of the process of mathematical induction, If $f(n)$ is divisible by 3 when $n = k$, then it has been shown that $f(n)$ is also divisible by 3 when $n = k + 1$ As $f(n)$ is divisible by 3 when $n = 1$, $f(n)$ is also divisible by 4 for all $n \ge 1$ and $n \in Z^+$ by mathematical induction	A1	2.4	
	(7)		
	-1		(7 marks)

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6	Let $n = 1$	B1	2.2a	TBC
	$LHS = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}^{1} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$			
	RHS = $\begin{pmatrix} 1+1 & -1 \\ 1 & -(1-1) \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$			
	As LHS = RHS, the matrix equation is true for $n = 1$.			
	Assume statement is true for $n = k$.	M1	2.4	
	So assume $\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}^k = \begin{pmatrix} k+1 & -k \\ k & -(k-1) \end{pmatrix}$			
	Begins to build an expression for $n = k + 1$:	M1	2.1	
	$ \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}^{k+1} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}^k \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} $			
	$ = \binom{k+1}{k} - \binom{k}{(k-1)} \binom{2}{1} - \binom{2}{0} $			
	Multiplies the matrices together and simplifies.	M1	1.1b	
	$\binom{k+1}{k} -\binom{-k}{-(k-1)}\binom{2}{1} -\binom{2}{0} = \binom{2k+2-k}{2k-(k-1)} -\binom{k+1}{-k}$			
	$ = \begin{pmatrix} (k+1)+1 & -(k+1) \\ k+1 & -((k+1)-1) \end{pmatrix} $			
	Makes correct conclusion	B1	2.4	
	Therefore, the matrix equation is true when $n = k + 1$			
	Demonstrates an understanding of the process of mathematical induction,	A1	2.4	
	If the matrix equation is true for $n = k$, then it is shown to be true for $n = k + 1$			
	As the matrix equation is true for $n = 1$ and $n \in Z^+$ by mathematical induction			
		(6)		
				(6 marks)

Notes

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	Let $n = 1$ LHS $= \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}^1 = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}$ RHS $= \begin{pmatrix} 3^1 & 0 \\ \frac{1}{2}(3^1 - 1) & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}$ As LHS = RHS, the matrix equation is true for n = 1.	B1	2.2a	TBC
	Assume statement is true for $n = k$. So assume $\begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}^{k} = \begin{pmatrix} 3^{k} & 0 \\ \frac{1}{2}(3^{k} - 1) & 1 \end{pmatrix}$	M1	2.4	
	Begins to build an expression for $n = k + 1$: $ \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}^k \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3^k & 0 \\ \frac{1}{2}(3^k - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix} $	M1	2.1	
	Correctly multiplies the matrices together, but does not have the correct form for the row 2, column 1 expression. $ \begin{pmatrix} 3^{k} & 0 \\ \frac{1}{2}(3^{k}-1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 \times 3^{k} & 0 \\ 3 \times \frac{1}{2}(3^{k}-1) + 1 & 1 \end{pmatrix} $	M1	1.1b	
	Simplifies the $3 \times \frac{1}{2} (3^{k} - 1) - 1$ term so that it is in the correct form, $3 \times \frac{1}{2} (3^{k} - 1) - 1 = \frac{1}{2} \times 3 \times 3^{k} - \frac{1}{2} \times 3 \times 1 + 1 = \frac{1}{2} \times 3^{k+1} - \frac{1}{2}$ $= \frac{1}{2} (3^{k+1} - 1)$	M1	1.1b	
	(continued)			

Further Maths Core Pure (AS/Year 1) Unit Test 6: Proof

Sates the correct version of $\begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}^{k+1}$,			
$ \begin{pmatrix} 3^{k} & 0 \\ \frac{1}{2}(3^{k} - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3^{k+1} & 0 \\ \frac{1}{2}(3^{k+1} - 1) & 1 \end{pmatrix} $			
Therefore the matrix equation is true when $n = k + 1$	B1	2.4	
Demonstrates an understanding of the process of mathematical induction: If the matrix equation is true for $n = k$, then it is shown to be true for $n = k + 1$. As the matrix equation is true for $n = 1$ and $n \in Z^+$ by mathematical induction.	A1	2.4	
	(7)		
$\det \mathbf{M} = ad - bc = 3^n - 0(=3^n)$	A1	1.1b	TBC
$\left(\mathbf{M}^{n}\right)^{-1} = \frac{1}{3^{n}} \begin{pmatrix} 1 & 0\\ -\frac{1}{2}(3^{n} - 1) & 3^{n} \end{pmatrix}$	A2	1.1b	
	(3)		
			(10 marks)
Notes			
ark award for stating $\frac{1}{\det \mathbf{M}} = \frac{1}{3^n}$ (or dividing each term by 3^n) an ating 'b' and 'c'.	d 1 mark	for switch	ing 'a' and 'd'
	Therefore the matrix equation is true when $n = k + 1$ Demonstrates an understanding of the process of mathematical induction: If the matrix equation is true for $n = k$, then it is shown to be true for $n = k + 1$. As the matrix equation is true for $n = 1$ and $n \in Z^+$ by mathematical induction. $\det \mathbf{M} = ad - bc = 3^n - 0 (= 3^n)$ $\left(\mathbf{M}^n\right)^{-1} = \frac{1}{3^n} \begin{pmatrix} 1 & 0 \\ -\frac{1}{2}(3^n - 1) & 3^n \end{pmatrix}$ Notes rk award for stating $\frac{1}{\det \mathbf{M}} = \frac{1}{3^n}$ (or dividing each term by 3^n) an	Therefore the matrix equation is true when $n = k + 1$ Demonstrates an understanding of the process of mathematical induction: If the matrix equation is true for $n = k$, then it is shown to be true for $n = k + 1$. As the matrix equation is true for $n = 1$ and $n \in Z^+$ by mathematical induction. (7) det $\mathbf{M} = ad - bc = 3^n - 0(=3^n)$ $\left(\mathbf{M}^n\right)^{-1} = \frac{1}{3^n} \begin{pmatrix} 1 & 0 \\ -\frac{1}{2}(3^n - 1) & 3^n \end{pmatrix}$ (3) Notes rk award for stating $\frac{1}{\det \mathbf{M}} = \frac{1}{3^n}$ (or dividing each term by 3^n) and 1 mark	Therefore the matrix equation is true when $n = k + 1$ Demonstrates an understanding of the process of mathematical induction: If the matrix equation is true for $n = k$, then it is shown to be true for $n = k + 1$. As the matrix equation is true for $n = 1$ and $n \in Z^+$ by mathematical induction. (7) det $\mathbf{M} = ad - bc = 3^n - 0(=3^n)$ $(\mathbf{M}^n)^{-1} = \frac{1}{3^n} \begin{pmatrix} 1 & 0 \\ -\frac{1}{2}(3^n - 1) & 3^n \end{pmatrix}$ (3) Notes rk award for stating $\frac{1}{\det \mathbf{M}} = \frac{1}{3^n}$ (or dividing each term by 3^n) and 1 mark for switch