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Pure Mathematics
A Level:   Practice Paper
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Questions to revise:







1		Prove by exhaustion that  for positive integers from 1 to 6 inclusive.
		(3 marks)



2   	Solve  in the range. Round your answer to 1 decimal place.	
(4 marks)




3   	The temperature of a mug of coffee at time t can be modelled by the equation , 	where is the temperature, in °C, of the coffee at time t minutes after the coffee was poured into the 	mug and  is the room temperature in °C.
a	Using the equation for this model, explain why the initial temperature of the coffee is independent of the initial room temperature.		(2 marks)
b	Calculate the temperature of the coffee after 10 minutes if the room temperature is 20 °C.		(2 marks)

4	Given that, find the value of a.						(5 marks)


5		Use proof by contradiction to show that there are no positive integer solutions to the statement 															(5 marks)


6	
	Find the values of the constants A, B and C.							(6 marks)



7	The functions p and q are defined by  and 

a	Given that pq(x) = qp(x), show that                                                            (4 marks)

b	Explain why  has no real solutions.		(2 marks)



8	The curve C has equation
a	Show that C is concave on the interval [–5, –3].						(3 marks)
b	Find the coordinates of the point of inflection.						(3 marks)




9	For an arithmetic sequence and
a	Find the value of the 20th term.								(4 marks)
b	Given that the sum of the first n terms is 78, find the value of n.		(4 marks)





10	A stone is thrown from the top of a building. The path of the stone can be modelled using the 	parametric equations,,   where x is the horizontal distance from 	
	the building in metres and y is the vertical height of the stone above the level ground in metres.
a	Find the horizontal distance the stone travels before hitting the ground.			(4 marks)
b	Find the greatest vertical height.								(5 marks) 


11	The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. 



	a, b and c are the vectors,  and  respectively. 

	The points M and N lie on OA such that  

	The points K and L lie on EF such that 

[image: alevel_ut_p2_u12_test_aw1]
	Prove that the diagonals KN and ML bisect each other at P.					(10 marks)



12	

a	Given that , find the values of the constants A and B.		(5 marks)

b	Find the exact value of								(5 marks)







13	,	    
[image: alevel_ut_p2_u9_test_aw1]
a	The diagram shows a graph of the price of a stock during a 12-hour trading window. 
	The equation of the curve is given above. 

	Show that the price reaches a local maximum in the interval 			(5 marks)
b	Figure 1 shows that the price reaches a local minimum between 9 and 11 hours after trading begins. 
	Using the Newton–Raphson procedure once and taking t0 = 9.9  as a first approximation, 
	find a second approximation of when the price reaches a local minimum.			(6 marks)



14	
a	Find the values of the constants A, B and C. 						(6 marks)

b	Hence, or otherwise, expandin ascending powers of x, as far as the x2 term.	
														(6 marks)

c	Explain why the expansion is not valid for						(1 mark)


	
(TOTAL:  100 MARKS)
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