DECISION MATHS J TRAVELLING SALESPERSON

	A	В	С	D	E	F
A	_	80	105	170	103	95
В	80	_	33	170	155	88
С	105	33	_	143	151	68
D	170	170	143	_	105	79
E	103	155	151	105	_	87
F	95	88	68	79	87	_

1 The table shows the distances, in km, between six towns.

(2 marks)

contain the length of the optimal route between the towns.

^{a Use Prim's algorithm, starting from A, to find a minimum spanning tree.} You must make the order of the arc selection clear. Draw your minimum spanning tree.
b i Hence find an initial upper bound for the travelling salesman problem.
ii Using short cuts, find two routes that reduce the upper bound to a value less than 640 km.
c By deleting vertex *F*, find a lower bound to the travelling salesman problem for this network.
d Using your answers to b and c, write down the smallest interval that must

2 The network in the diagram shows the distances, in km, between seven wind turbines. All the turbines need to be serviced by an engineer.

By deleting C a lower bound for the length of the route is found to be 122 km.

- a By deleting *F*, find another lower bound of the route. State which is the better lower bound of the two. (5 marks)
- **b** By inspection, complete the table of least distances below.

(3 marks)

	A	В	С	D	E	F	G
A	—	20	14		33	29	
В	20	—	17		13	31	40
С	14	17	_	10	19	15	
D			10	_			30
E	33	13	19		_	18	27
F	29	31	15		18	_	21
G		40		30	27	21	-

c Starting at *F* use the nearest neighbour algorithm with the completed table to obtain an upper bound for the length of the route. State your route. (3 marks)

	A	В	С	D	E	F	G
A	—	4	5	3	2	5	6
B	4	—	1	2	4	7	6
С	5	1	_	3	4	6	7
D	3	2	3	_	2	6	4
E	2	4	4	2	—	6	6
F	5	7	6	6	6	_	10
G	6	6	7	4	6	10	_

The table shows the distance, in km, between seven houses.

Prim's algorithm is used on the above table to find a minimum spanning tree. The order in which the arcs are chosen is *AE ED BD BC DG AF* with the associated tree.

Melissa delivers parcels. She has a parcel to deliver to each of the seven houses.

The distance between the parcel depot and each house, in km, is shown in the table below.

House	A	B	С	D	E	F	G
Distance from depot P (km)	11	15	16	16	12	17	18

Melissa wants to travel the shortest distance from the depot to each house before returning to the depot.

- **a** Using the given information, calculate a lower bound for the length of Melissa'sroute. You must show all your working clearly.
- **b** Use the nearest neighbour algorithm, starting from the parcel depot (P), to find a

route for Melissa to deliver all her parcels. Hence find an upper bound for the length of Melissa's route.

(3 marks)

(3 marks)