

Mechanics 10 – Kinematics 2: Integration

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please complete all questions.

1. Evaluate the following definite integrals.

(i) $\int_{-1}^{1} (4x+5) dx$	(ii)	$\int_{-1}^{0} (6x^2 - 2x) \mathrm{d}x$	(iii)	$\int_2^4 (x^2 - x + 3) \mathrm{d}x$
(iv) $\int_{-1}^{2} (2 + x - x^2) dx$	(v)	$\int_{-1}^{2} (x^3 - x + 4) \mathrm{d}x$	(vi)	$\int_{1}^{3} \frac{1}{x^{3}} dx$
$(\text{vii})\int_{1}^{9}\frac{1}{\sqrt{x}}\mathrm{d}x$	(viii)	$\int_{1}^{4} \frac{2-x+3x^2}{\sqrt{x}} \mathrm{d}x$	(ix)	$\int_1^2 \frac{x^2 - 1}{x^4} \mathrm{d}x$

Section 2 – Consolidation of this week's topic. Please complete all questions.

- 1. A particle is moving along the *x*-axis. At time *t* seconds (where $t \ge 0$), the velocity of *P* is v ms⁻¹ in the direction of *x* increasing, where $v = 12 t t^2$. Find the acceleration of *P* when *P* is instantaneously at rest. (6 marks)
- 2. At time *t* seconds, where $t \ge 0$, the velocity $v \text{ ms}^{-1}$ of a particle moving in a straight line is given by $v = 12 + t 6t^2$. When t = 0, *P* is at a point *O* on the line. Find
 - (a) The magnitude of the acceleration of *P* when v = 0
 - (b) The distance of *P* from *O* when v = 0
- 3. A particle *P* is moving on the *x*-axis. At time *t* seconds, the velocity of *P* is $(4t-t^2)$ ms⁻¹ in the direction of *x* increasing. At time t = 0, *P* is at the origin *O*. Find
 - (a) The value of x when t > 0 and P is at rest

(b) The total distance moved by *P* in the interval $0 \le t \le 5$. (5+5 = 10 marks)

4. A particle *P* moves in a straight line so that, at time *t* seconds, its velocity *v* ms⁻¹ is given by $u = \begin{cases} 4, & 0 \le t \le 2 \\ 4, & 0 \le t \le 2 \end{cases}$

$$-\left(5-\frac{4}{t^2}, \quad t>2\right)$$

- (a) Sketch a velocity-time graph to illustrate the motion of P.
- (b) Find the distance moved by P in the interval $0 < t \le 5$. (3+5 = 8 marks)
- 5. A particle *P* moves in a straight line so that, at time *t* seconds, its acceleration *a* ms⁻² is given by $a = \begin{cases} 6t - t^2, & 0 \le t \le 2\\ 8 - t, & t > 2 \end{cases}$

When t = 0 the particle is at a fixed point *O* on the line. Find

- (a) The speed of *P* when t = 2,
- (b) The speed of *P* when t = 4,
- (c) The distance from O to P when t = 4.

(5+5+7 = 17 marks)

(6+6 = 12 marks)

(Total 55 Marks)

Section 3 – Extension questions. If you are aiming for a top grade, you should attempt these questions.

A particle *P* moves along the *x*-axis in a straight line so that, at time *t* seconds, the velocity of *P* is *v* m s^{-1} , where

$$v = \begin{cases} 10t - 2t^2, & 0 \le t \le 6, \\ \frac{-432}{t^2}, & t > 6. \end{cases}$$

At t = 0, *P* is at the origin *O*. Find the displacement of *P* from *O* when

- (*a*) t = 6,
- (*b*) t = 10.