

Mechanics 7 - Projectiles 1: Solutions

Section 1

1. (a)
$$\sqrt{5^2 + 12^2} = 13$$
 (b) $\sqrt{3^2 + 5^2} = \sqrt{34} = 5.83$ (3 sf)

2.
$$a = \frac{39-0}{20} = 1.95 ms^{-2}$$
 distance= $39 \times \frac{80+60}{2} = 2730 \ m \ or \ 2.73 \ km$

3.
$$s = ?$$
 $u = 6$ $v = ?$ $a = -9.8$ $t = 2$ $v = u + at = 6 - 2 \times -9.8 = 13.6$ ms⁻¹ $s = ut + \frac{1}{2}at^2 = 6 \times 2 + 2 \times -9.8 = -7.6$ so stone was thrown 7.6 m above the water

4.
$$s = 3$$
 $u = 25$ $v = ?$ $a = -9.8$ $t = ?$ $s = ut + \frac{1}{2}at^2$ so $3 = 25t - 4.9t^2$
So times the ball is at 3 m are $t_1 = 0.123$ and $t_2 = 4.979$ so above 3m for t_2 - $t_1 = 4.86$ seconds

- 5. (a) 6.6277 would represent hours of sunshine on day 0 while the -0.0153 indicates that sunshine hours drop by around 55 seconds per day
 - (b) x = 32 y = 6.14 hours
 - (c) Not reliable the data has very weak correlation so a linear model is not appropriate.

Section 2

1. (a)
$$\sqrt{3^2 + 4^2} = 5 \text{ ms}^{-1}$$
 at an angle of $\arctan(\frac{3}{4}) = 36.9^0$ to the **i** vector (b) $\sqrt{2^2 + (-1)^2} = \sqrt{5}$ ms-1 at an angle of $\arctan(\frac{1}{2}) = (-)26.6^0$ to the **i** vector

(4 marks)

2.
$$39 \sin \theta = 39 \times \frac{12}{13} = 36$$
 $39 \cos \theta = 39 \times \frac{5}{13} = 15$
So $v = 15i + 36j \text{ ms}^{-1}$

(4 marks)

3. (a) For vertical motion,
$$s = 25$$
, $u = 0$ $v = ?$, $a = g$, $t = ?$
Using $s = ut + \frac{1}{2}at^2$ we get $25 = 4.9 \times t^2$ giving $t = 2.26$ s (3sf)

- (b) No acceleration horizontally so s = ut giving $15 \times t = 33.9$ m (3sf)
- (c) The distance is likely to be an overestimate as air resistance will reduce this.

(6 marks)

4. For horizontal motion,
$$s = 15 \times 1 = 15$$

For vertical motion, $s = ?$, $u = 0$ $v = ?$, $a = g$, $t = 1$

Using $s = ut + \frac{1}{2}at^2$ we get $s = 4.9 \times 1^2 = 4.9$

The distance from start is $\sqrt{15^2 + 4.9^2} = 15.8$ m (3sf)

(6 marks)

- 5. For vertical motion, s = 0.04, u = 0 v = ?, a = g, t = TFor horizontal motion, s = 80, u = ? v = ?, a = 0, t = TUsing $s = ut + \frac{1}{2}at^2$ vertically we get $0.04 = 4.9 \times T^2$ giving $T = \sqrt{\frac{0.04}{4.9}}$ s (oe)

 Using $s = ut + \frac{1}{2}at^2$ horizonally we get $80 = uT + 0 \times T^2$ giving $u = \frac{80}{T}$ So u = 885 ms⁻¹ (3sf)
- 6. (a) For initial motion across the table, using F = ma gives $-\frac{1}{4}mg = ma$ so $a = -\frac{1}{4}g$ So s = 0.8, $u = \frac{7\sqrt{3}}{5}v = ?$, $a = -\frac{g}{4}$, $t = T_1$ Using $v^2 = u^2 + 2as$ we get $v^2 = (\frac{7\sqrt{3}}{5})^2 + 2(-\frac{g}{4}) \times 0.8$ giving v = 1.4 ms⁻¹
 - (b) For vertical motion under gravity, s = 1.2, u = 0 $v = ?, a = g, t = T_2$ \checkmark Using $s = ut + \frac{1}{2}at^2$ vertically we get $1.2 = 4.9 \times T_2^2$ so $T_2 = \frac{2\sqrt{3}}{7}$ \checkmark No acceleration horizontally, so distance $= u \times T_2 = 1.4 \times \frac{2\sqrt{3}}{7}$ \checkmark Total distance travelled horizontally $= 0.8 + 1.4 \times \frac{2\sqrt{3}}{7} = 1.49$ m (3sf) \checkmark
 - (c) $T_1 = \frac{v u}{a} = \frac{1.4 \frac{7\sqrt{3}}{5}}{-\frac{g}{4}} = 0.4183 \dots$ Total time = $T_1 + T_2 = 0.913$ seconds (3sf)

(14marks)

(Total 40 Marks)