

Pure 1 - Quadratics

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

Expand and sin a $x(x^2 - x^{-1})$ e $\frac{1}{2}x^2(6x + 4x^2)$ i $(x^2 + 1)(x^4 - 1)$	b $2x^3(x^{-1}+3)$ f $3x^{\frac{1}{2}}(x^{-\frac{1}{2}}-x^{\frac{3}{2}})$	c $x^{-1}(3x - x^3)$ d $4x^{-2}(3x^5 + 2x^3)$ g $x^{-\frac{3}{2}}(5x^2 + x^{\frac{7}{2}})$ h $x^{\frac{1}{3}}(3x^{\frac{5}{3}} - x^{-\frac{4}{3}})$ k $(x^2 - 2x^{-1})(x - x^{-2})$ l $(x^2 - x^{\frac{3}{2}})(x - x^{\frac{1}{2}})$
Evaluate a 3 ⁻² g 16 ^{1/4} m 81 ^{-1/4}	b $(\frac{2}{5})^0$ c $(-2)^{-6}$ h $(-27)^{\frac{1}{3}}$ i $(\frac{1}{49})^{\frac{1}{2}}$ n $(-64)^{-\frac{1}{3}}$ o $(\frac{1}{32})^{-\frac{1}{3}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Simplify a $\sqrt{7} \times \sqrt{7}$ e $(\sqrt{2})^5$ i $\frac{\sqrt{32}}{\sqrt{2}}$	b $4\sqrt{5} \times \sqrt{5}$ f $(2\sqrt{3})^3$ j $\frac{\sqrt{3}}{\sqrt{12}}$	c $(3\sqrt{3})^2$ d $(\sqrt{6})^4$ g $\sqrt{2} \times \sqrt{8}$ h $2\sqrt{3} \times \sqrt{27}$ k $(\sqrt[3]{6})^3$ l $(3\sqrt[3]{2})^3$

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1. Using factorisation, solve each equation and then sketch the graph labelling all axes intercepts.

(a) $y = x^2 - 4x + 3$	(b) $y = x^2 + 4x - 5$	(c) $y = x^2 - 9$
(d) $y = x^2 - 2x$	(e) $y = 27 + 12x + x^2$	(f) $y = 60 - 4x - x^2$
(g) $y = 3x^2 + 11x - 4$	(h) $y = 2x^2 - 3x + 1$	

(5 marks each)

- 2. Using completing the square, solve each equation and then sketch the graph labelling all axes intercepts and the turning point.
- (a) $y = x^2 4x + 2$ (b) $y = 7 + 10x + x^2$ (c) $y = x^2 - 3x + 1$ (d) $y = 2x^2 - 4x + 1$ (e) $y = -x^2 + x + 1$ (f) $y = 2x^2 - 7x + 4$

(5 marks each)

Godalming College

- 3. Using the quadratic formula, solve each equation and then sketch the graph labelling all axes intercepts.
- (a) $y = x^2 + 4x + 1$ (b) $y = 4 + 8x x^2$ (c) $y = x^2 20x + 91$
- (d) $y = 3x^2 7x + 5$

(5 marks each)

- 4. By evaluating the discriminant, determine whether the roots of each equation are real and distinct, real and equal or not real.
- (a) $y = x^2 + 2x 7$ (b) $y = x^2 + x + 3$ (c) $y = x^2 6x + 3$ (a) (d) $y = 2 + 3x + 2x^2$ (e) $y = 3x^2 - 7x + 5$

(2 marks each)

5. By choosing the most appropriate technique, solve each equation and then sketch the graph labelling all axes intercepts.

(a)
$$y = x^2 - 3x + 2$$
 (b) $y = x^2 + 5x + 6$ (c) $y = -x^2 + 5x - 4$
(d) $y = 3x^2 + 11x - 4$

(5 marks each)

(Total 130 Marks)

Section 3 – Extension questions. If you are aiming for a top grade, you should attempt these questions.

By completing the square, show that the roots of the equation $ax^2 + bx + c = 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Given that the x-axis is a tangent to the curve with the equation

$$y = x^2 + rx - 2x + 4,$$

find the two possible values of the constant r.