

Pure 10 – Binomial expansion

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop-in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

- 1. Simplify $\frac{1+\sqrt{10}}{\sqrt{10}-3}$.
- 2. Solve the equation $3x = \sqrt{5}(x+2)$ giving your answer in the form $a + b\sqrt{5}$ where *a* and *b* are rational.
- 3. Simplify $\frac{x^{\frac{3}{2}}-x}{x^{\frac{1}{2}}}$.
- 4. Simplify $\frac{x+1}{x^{\frac{1}{2}}+x^{-\frac{1}{2}}}$.

5.

The figure above shows a sketch of the circle with equation $x^2 + y^2 - 20x - 4y = 21$ and centre C. The points A, B, D and E are the intersections of the circle with the axes. Determine

- i) the radius of the circle and the coordinates of C;
- ii) verify that B is the point (21,0) and find the coordinates of A, D and E;
- iii) find the equation of the perpendicular bisector of BE and verify that this line passes through C.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1. Find the binomial expansion of each of the following in ascending powers of x up to and including the term x^3 , for |x| < 1

a)
$$2(1+x)^{-3}$$
 b) $\sqrt[3]{1-x}$ (4 marks)

- 2. Expand the following in ascending powers of x up to and including the term x^3 , and state the set of values of x for which each expansion is valid.
 - a) $(4+x)^{\frac{1}{2}}$ b) $(3-x)^{-3}$ (6 marks)
- 3. Find the coefficient of x^2 in the series expansion of $\frac{2+x}{\sqrt{4-2x}}$, |x| < 2 (4 marks)
- 4. The first three terms in the expansion of $(1 + ax)^b$, in ascending powers of x, for |ax| < 1, are

$$1 - 6x + 24x^2$$

- a) Find the values of the constants a and b. (4 marks)
- b) Find the coefficient of x^3 in the expansion (2 marks)
- 5. Find a counter-example to disprove each of the following statements, demonstrating why it is a counter-example:
 - a) Every triangle has at least one angle greater than 60°
 - b) $a < b \implies a^2 < b^2$ for all a,b
 - c) (n! + 1) is a prime number for all positive integers n
 - d) The equation of a straight line in 2 dimensions can always be written in the form y=mx+c for some m,c
 - e) $k\pi$ is irrational for all non-zero values of k
 - f) The graph of the function $y = ax^2 + bx + c$ is a parabola for all a,b,c
 - g) $n^2 + n + 41$ is a prime number for all positive integers n

(3 marks each)

- 6. Use the method of proof by exhaustion to prove the following statements;
 - a) Discounting reflections and rotations, there are four distinct triangles with a perimeter of 11cm and every side having an integer length in cm.
 - b) The product of any two consecutive positive integers ends in 0, 2, or 6. (Hint consider the final digits)

(3 marks each)

- 7. Prove the following by direct deduction;
 - a) $x^2 + 6x + 11$ is positive for all real values of x.
 - b) If a,b,c,d are consecutive integers in ascending order, their sum is equal to cd ab.
 - c) The triangle whose vertices are (2,1), (5,2) and (4,5) is isosceles and right-angled.
 - d) If the equation $x^2 + kx + 2k = 0$, where k is a positive constant, has two distinct real roots, then k>8.

(3 marks each)

(Total = 59 marks)