

Pure 22 - Logarithms

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

Figure 1 shows the curves $y = 3 + 2e^x$ and $y = e^{x+2}$ which cross the *y*-axis at the points *A* and *B* respectively.

(a) Find the exact length AB.

The two curves intersect at the point C.

(b) Find an expression for the x-coordinate of C and show that the y-coordinate of C is $\frac{3e^2}{e^2-2}$.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions. 1) Write as a single logarithm:

- (a) $\log_2 7 + \log_2 3$ (b) $\log_2 36 \log_2 4$ (c) $3\log_5 2 + \log_5 10$
- (d) $2\log_6 8 4\log_6 3$ (e) $\log_{10} 5 + \log_{10} 6 \log_{10} (\frac{1}{4})$ (8)

2) Write as a single logarithm, then simplify your answer:

(a) $\log_2 40 - \log_2 5$ (b) $\log_6 4 + \log_6 9$ (c) $2\log_{12} 3 + 4\log_{12} 2$ (d) $\log_8 25 + \log_8 10 - 3\log_8 5$ (e) $2\log_{10} 20 - (\log_{10} 5 + \log_{10} 8)$ (12)

3) Write in terms of logx, logy and logz:

(a)
$$\log(x^3y^4z)$$
 (b) $\log\left(\frac{x^5}{y^2}\right)$ (c) $\log(a^2x^2)$
(d) $\log\left(\frac{x\sqrt{y}}{z}\right)$ (e) $\log\sqrt{ax}$ (10)

4) Solve, giving your answer to 3 significant figures:

(a) 2 ^x =75	(b) $\log_{e} x = 4.2$	(c) $\log_{10} x = 2.1$	(d) $4^{2x} = 100$
(e) 9 ^{x+5} = 50	(f) $7^{2x-1} = 23$	(g) $3^{x-1} = 9^{x+1}$	(h) log ₁₀ (2 <i>x</i> +1) = -0.5
(i) $8^{3-x} = 2^x$	(j) $2^{4-3x} = 4^{x+5}$		(22)

5) Solve, giving your answer to 3 significant figures:

(a) $2^{2x} - 6(2^x) + 5 = 0$	(b) $3^{2x} - 15(3^x) + 44 = 0$	
(c) $7^{2x} + 12 = 7^{x+1}$	(d) $2\log_{10}x - \log_{10}(2x-1) = 1$	
(e) $3^{2x+1} - 26(3^x) - 9 = 0$	(f) $\log_e(x+1) + \log_e(x-1) = 1.2$	(18)

6) (a) Given that $\log_3 x = 2$, determine the value of x.	(2)
(b) Calculate the value of y for which $2\log_3 y - \log_3(y+4) = 2$.	(4)

(Total 76 Marks)

Section 3 – Extension questions. If you are aiming for a top grade, you should attempt these questions.

1. (a) Given that $3 + 2\log_2 x = \log_2 y$, show that $y = 8x^2$.

(b) Hence, or otherwise, find the roots α and β , where $\alpha < \beta$, of the equation

 $3 + 2\log_2 x = \log_2(14x-3).$

(c) Show that $\log_2 \alpha = -2$.

(d) Calculate $log_2 \beta$, giving your answer to 3 significant figures.

2. Giving your answers to 2 decimal places, solve the simultaneous equations

 $e^{2y} - x + 2 = 0$

ln(x + 3) - 2y - 1 = 0