

Pure $35 - Double Angle and Rsin(x+\alpha)$

Please **complete** this homework by _____. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please complete all questions.

1. Given
$$y = \sqrt{x} + \frac{4}{\sqrt{x}} + 4$$
, $x > 0$

find the value of $\frac{dy}{dx}$ when x = 8, writing your answer in the form $a\sqrt{2}$, where a is a rational number.

2. Joan brings a cup of hot tea into a room and places the cup on a table. At time t minutes after Joan places the cup on the table, the temperature, θ °C, of the tea is modelled by the equation

$$\theta = 20 + Ae^{-kt}$$

where *A* and *k* are positive constants.

Given that the initial temperature of the tea was 90 °C,

(a) find the value of A.

The tea takes 5 minutes to decrease in temperature from 90 °C to 55 °C.

- (b) Show that $k = \frac{1}{5} \ln 2$.
- 3. The curve C_1 has equation

$$y = x^2(x+2).$$

- (a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.
- (b) Sketch C_1 , showing the coordinates of the points where C_1 meets the x-axis.
- (c) Find the gradient of C_1 at each point where C_1 meets the x-axis.

The curve C_2 has equation

$$y = (x - k)^2(x - k + 2),$$

where k is a constant and k > 2.

- (d) Sketch C_2 , showing the coordinates of the points where C_2 meets the x and y axes.
- **4.** Find, giving your answer to 3 significant figures where appropriate, the value of *x* for which
 - (a) $5^x = 10$,
 - (b) $\log_3(x-2) = -1$.
- **5.** Given that $2 \log_2(x + 15) \log_2 x = 6$,
 - (a) show that $x^2 34x + 225 = 0$.
 - (b) Hence, or otherwise, solve the equation $2 \log_2(x + 15) \log_2 x = 6$.

6. Find

$$\int \left(2x^5 - \frac{1}{4x^3} - 5\right) dx$$

giving each term in its simplest form.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions. (Total 60 marks)

- 1. a) Express $3\cos\theta + 4\sin\theta$ in the form R $\cos(\theta \alpha)$. (3)
 - b) Solve $3\cos\theta + 4\sin\theta = 1$ for $0^{\circ} < \theta < 360^{\circ}$. (3)
 - c) Find the minimum value of $3\cos\theta + 4\sin\theta$. (1)
- 2. a) Given that $\tan x \neq 1$, show that $\frac{\cos 2x}{\cos x \sin x} \equiv \cos x + \sin x$ (3)
 - b) By expressing $\cos x + \sin x$ in the form $R\sin(x + \alpha)$, solve, for $0^{\circ} \le x \le 360^{\circ}$,

$$\frac{\cos 2x}{\cos x - \sin x} = \frac{1}{2} \tag{6}$$

- 3. Prove that $\frac{2\tan x}{1+\tan^2 x} = \sin 2x \tag{4}$
- 4. (a) Express $\sin x + \sqrt{3} \cos x$ in the form $R \sin (x + \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$. (3)
 - (b) Show that the equation $\sec x + \sqrt{3} \csc x = 4 \cot be$ written in the form

$$\sin x + \sqrt{3}\cos x = 2\sin 2x. \tag{3}$$

(c) Deduce from parts (a) and (b) that $\sec x + \sqrt{3} \csc x = 4$ can be written in the form

$$\sin 2x - \sin (x + 60^\circ) = 0$$
 (1)

5. Find all the solutions of

in the interval $0 \le \theta < 360^{\circ}$.

$$2\cos 2\theta = 1 - 2\sin \theta \tag{6}$$

6. (a) Express 6 cos θ + 8 sin θ in the form R cos $(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the value of α to 3 decimal places. (4)

(b)
$$p(\theta) = \frac{4}{12 + 6\cos\theta + 8\sin\theta}$$
, $0 \le \theta \le 2\pi$.

Calculate

(i) the maximum value of $p(\theta)$,

(ii) the value of θ at which the maximum occurs. (4)

7. (i) Without using a calculator, find the exact value of $(\sin 22.5^{\circ} + \cos 22.5^{\circ})^{2}$.

You must show each stage of your working.

(5)

(ii) (a) Show that $\cos 2\theta + \sin \theta = 1$ may be written in the form

$$k \sin^2 \theta - \sin \theta = 0$$
, stating the value of k . (2)

(b) Hence solve, for $0 \le \theta < 360^{\circ}$, the equation

$$\cos 2\theta + \sin \theta = 1. \tag{4}$$

8.

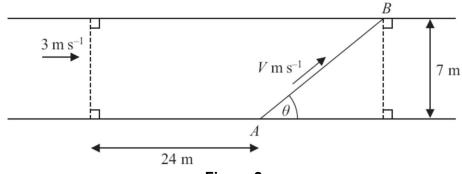


Figure 2

Kate crosses a road, of constant width 7 m, in order to take a photograph of a marathon runner, John, approaching at 3 m s⁻¹.

Kate is 24 m ahead of John when she starts to cross the road from the fixed point A.

John passes her as she reaches the other side of the road at a variable point B, as shown in Figure 2.

Kate's speed is $V \, \mathrm{m \ s^{-1}}$ and she moves in a straight line, which makes an angle θ , $0 < \theta < 150^{\circ}$, with the edge of the road, as shown in Figure 2.

You may assume that V is given by the formula

$$V = \frac{21}{24\sin\theta + 7\cos\theta}, \qquad 0 < \theta < 150^{\circ}$$

(a) Express 24sin θ + 7cos θ in the form R cos ($\theta - \alpha$), where R and α are constants and where R > 0 and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places.

(3)

Given that θ varies,

(b) find the minimum value of V.

(2)

Given that Kate's speed has the value found in part (b),

(c) find the distance AB.

(3)