

Pure 37 – Differentiation From First Principles and Small Angle Approximations

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop-in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

- 1. Find the unit vector in the direction 2i + j 3k.
- 2. The position vector of the point A is $2\mathbf{i} + 5\mathbf{j} 4\mathbf{k}$ and $\overrightarrow{AB} = 3\mathbf{i} 5\mathbf{j} \mathbf{k}$ and the coordinates of point C are (1, -3, -2).

Find in terms of i, j and k,

- a. the position vectors of B and C
- b. \overrightarrow{AC}

Find the exact value of

- c. The distance between A and C
- d. $|\overrightarrow{OC}|$
- 3. Find the angles that the vector $\overrightarrow{AB} = 2\mathbf{i} + 3\mathbf{j} 5\mathbf{k}$ makes with each of the positive coordinate axes to 1 d.p.
- 4. Show that the function $f(x) = 4 x(2x^2 + 3)$ is decreasing for all $x \in \mathbb{R}$.
- 5. $f(x) = px^3 3px^2 + x^2 4$. When x = 2, f''(x) = -1. Find p.
- 6. Given that $f(x) = x^2$ and g(x) = 2x + 5 solve fg(x) = 9.
- 7. Find the inverse function of $f(x) = \frac{1}{x} 3$, $x \in \mathbb{R}$, 2 < x < 5.
- 8. Find the equations of the tangents to the circle $x^2 + y^2 10x 8y + 21 = 0$ at the points where the circle cuts the x axis.
- 9. Solve the simultaneous equations:

$$\log(y - x) = 0$$

$$2\log y = \log(21 + x)$$

10. Solve $2^{2x} - 2^x = 6$.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1. a) When
$$\theta$$
 is small, show that the expression $\frac{5cos2\theta - sin3\theta - 4}{1 - sin5\theta}$ can be written as $2\theta + 1$. (3 marks)

b) Hence write down the value of
$$\frac{5\cos 2\theta - \sin 3\theta}{1 - \sin 5\theta}$$
 when θ is small. (1 mark)

2. For small
$$\theta$$
 show that $\frac{\sin^2 3\theta}{1-\cos 2\theta} \cong 4.5$. (3 marks)

3. Solve
$$\frac{\sin^2 5\theta + 2\theta}{\tan \theta} = 3$$
 for the case when θ can be assumed to be small. (3 marks)

4. Differentiate the following from first principles:

a.
$$\sin x$$
 (5 marks)
b. $\cos 3x$ (7 marks)
c. $4\cos x + 3x^2$ (5 marks)

Total: 27 marks