

Pure 38 – Differentiation: Trig, Exponentials, Logs & Chain Rule

Please **complete** this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please complete all questions.

1. Differentiate these functions:

a)
$$v = 3x^2$$

b)
$$y = x^3 + 5$$

a)
$$y = 3x^2$$
 b) $y = x^3 + 5$ c) $y = x^5 + 4x^3 + 2x$ d) $f(x) = 5$ e) $f(x) = 2x$ e) $f(x) = x(x^3 + 4)$

d)
$$f(x) = 5$$

$$e) f(x) = 2x$$

e)
$$f(x) = x(x^3 + 4)$$

2. Differentiate these functions:

a)
$$f(x) = \sqrt{x}$$
 b) $f(x) = 6x^{-1}$

c)
$$f(x) = x + \frac{1}{x}$$

a)
$$f(x) = \sqrt{x}$$
 b) $f(x) = 6x^{-2}$ c) $f(x) = x + \frac{1}{x}$
d) $y = x^{\frac{2}{3}} + x^{\frac{5}{3}}$ e) $y = x^2 - \frac{8}{x^2}$ f) $y = \frac{2x^3 + 3x}{\sqrt{x}}$

$$f) y = \frac{2x^3 + 3x}{\sqrt{x}}$$

3. Prove from first principles that the derivative of x^2 is 2x.

4. Find the equation of the tangent to the curve $y = 2x^3 + 6x + 10$ at the point (-1,2).

5. Find the coordinates of the point where the tangent to the curve $y = x^2 + 1$ at the point (2,5) meets the normal to the same curve at the point (1,2).

6. Simplify $\sqrt{75} - \sqrt{12}$ giving your answer in the form $a\sqrt{b}$ where a and b are integers to be found.

7. Write $2 + 0.8x - 0.04x^2$ in the form $A - B(x + C)^2$.

8. Given that the function $f(x) = sx^2 + 8x + s$ has equal roots, find the value of the positive constant s.

9. Given that the simultaneous equations y - x = k and $x^2 + y^2 = 4$ have exactly one pair of solutions, show that $k = +2\sqrt{2}$.

10. Find the set of values of x for which $x^2 - 5x - 14 > 0$. Write your answer using set notation.

Pure 12 1

Section 2 – Consolidation of this week's topic. Please complete all questions.

1)	Differentiate with	respect to x and sim	plify where possible:
	a) $y = 2 \cos x$	$b) f(x) = \sin 4x$	c) $y = 5\sin(\frac{\pi x}{3})$

a)
$$v = 2 \cos x$$

b)
$$f(x) = \sin 4x$$

c)
$$y = 5\sin(\frac{\pi x}{3})$$

d)
$$f(x) = 3\sin 2x + 5\cos x$$
 e) $y = \frac{3x^4 + 2x\sin x}{x}$

e)
$$y = \frac{3x^4 + 2x\sin x}{x}$$

[7]

2) Prove from first principles that the derivative of
$$\cos 3x$$
 is $-3 \sin 3x$. [5]

- 3) A curve has the equation $y = x + \cos x$. Find the equation of the tangent to the curve at $x = \frac{\pi}{\epsilon}$, leaving your answer exact. [4]
- 4) Differentiate with respect to x and simplify where possible:

a)
$$v = e^{3x}$$

a)
$$y = e^{3x}$$
 b) $f(x) = e^{-2x} + \ln 3x$ c) $y = 5^x$

c)
$$v = 5^x$$

$$d) f(x) = \ln 4x^5$$

e)
$$y = 2^{3x-1}$$

- 5) A curve has the equation $y = \ln x + \frac{3}{x}$. Find the equation of the normal to the curve at x = 1, leaving your answer exact.
- **6)** Differentiate with respect to x and simplify where possible:

a)
$$y = (3 + 2x)^5$$

b)
$$f(x) = (3 - 2x)^{-4}$$
 c) $y = (2 + 3x^2)^3$

c)
$$y = (2 + 3x^2)^3$$

d)
$$f(x) = (x^2 + 3x + 1)^5$$

e)
$$y = 5(x^2 - 1)^{\frac{1}{2}}$$
 [15]

- 7) A curve has the equation $y = (e^x + \ln x)^2$. Find the equation of the tangent to the curve at x = 1, leaving your answer exact. [5]
- 8) The curve with equation $y = 4 e^x$ meets the y axis at point P and the x axis at point Q.
 - a) Find the equation of the normal to the curve at P.
 - b) Find the equation of the tangent to the curve at Q.

The normal to the curve at P meets the tangent to the curve at Q at the point R. The x coordinate of R is $a \ln 2 + b$ where a and b are rational constants.

c) Show that
$$a = \frac{8}{5}$$
.

[10]

Total: 60 Marks

Pure 12 2