

Pure 40 – Differentiation: Trig Functions & Parametric Functions

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

- 1. A possible point of inflection is where the second derivative of a function is equal to zero. Identify the stationary point of $y = x^3 3x^2 + 3x$ and show that this point is a possible point of inflection.
- 2. The curve with equation $y = \frac{1}{x} + 27x^3$ has stationary points at $x = \pm a$. Find the value of a and determine the nature of the stationary points.
- **3.** The coordinates of points A and B are (-4, 6) and (2, 8) respectively. Find the equation of the perpendicular bisector of AB.
- **4.** The perpendicular bisector of the line segment joining (5, 8) and (7, -4) crosses the x axis at the point Q. Find the coordinates of Q.
- 5. A triangle has sides of length 5, x and x + 2. The side of length 5 is opposite to an angle of 60°. Find x to 3 significant figures.
- 6. Without using a calculator, if $\sin \theta = \frac{3}{5}$, what are $\cos \theta$ and $\tan \theta$?
- 7. Simplify the following trig expressions:

a) $\sin^2 3\theta + \cos^2 3\theta$ b) $\frac{\sin 2\theta}{\sqrt{1 - \sin^2 2\theta}}$

- 8. Given that $0 < \theta \le 360^\circ$, solve $7 \sin \theta = 5$.
- 9. Given that $0 \le \theta \le 180^\circ$, solve $\sin(3\theta 45^\circ) = \frac{1}{2}$.
- **10.** Given that $0 \le \theta \le 180^\circ$, solve $2\sin^2\theta = 3(1 \cos\theta)$.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1) Differentiate with respect to *x* and simplify where possible:

a)
$$y = 2 \sec x$$

b) $f(x) = \csc 4x$
c) $y = 5 \cot(\frac{\pi x}{3})$
d) $f(x) = 3 \sec (x - 3)$
e) $y = \cot (2x - 3)$
[10]

- 2) Show that the curve with equation $y = e^x \cot x$ has no turning points. [5]
- **3)** A curve has the equation $x = tan^2 y$.
 - a) Show that $\frac{dy}{dx} = \frac{1}{2\sqrt{x}(x+1)}$

b) The equation of the normal to the curve at the point where $y = \frac{\pi}{4}$ has a negative gradient. Find the equation of this normal. [7]

- 4) Differentiate with respect to x and simplify where possible:
 - a) $y = \sec^2 2x$ b) $f(x) = \cot^3 x$ c) $y = \csc^2(2x + 1)$ d) $f(x) = \ln(\tan 4x)$ e) $y = e^{\sin 3x}$ [10]

5) A curve has the equation $y = \csc\left(x - \frac{\pi}{6}\right)$ and crosses the y axis at the point P. The point Q on the curve has x coordinate $\frac{\pi}{2}$.

- a) Find an equation for the normal to the curve at P.
- b) Find an equation for the tangent to the curve at Q.The normal to the curve at P and the tangent to the curve at Q meet at R.
- c) Show that the x coordinate of R is $\frac{8\sqrt{3}+4\pi}{13}$. [11]
- 6) Find $\frac{dy}{dx}$ in terms of the parameter t:
 - a) $x = t^{3}$ y = t b) x = 3t 1 $y = 2 \frac{1}{t}$ c) $x = \cos 2t$ $y = \sin t$ d) $x = e^{t+1}$ $y = e^{2t-1}$ [7]
- 7) A curve is given by the parametric equations $x = t + \frac{1}{t}$, $y = t \frac{1}{t}$ $(t \neq 0)$.
 - a) Find an equation for the tangent to the curve at the point P where t = 3.
 - b) Show that the Cartesian equation of the curve is $x^2 y^2 = k$ where k is a constant to be found.
 - c) Show that the tangent to the curve at P does not meet the curve again. [10]

Total: 60 Marks