

Pure 41 – Differentiation: Implicit, Second Derivative & Rates of Change

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

- 1. The surface area of an expanding sphere of radius r is given by $4\pi r^2$. Find the rate of change of the area with respect to the radius when r = 6cm.
- **2.** Differentiate $2x^3 + \sqrt{x} + \frac{x^2 + 2x}{x^2}$.
- **3.** The point (1, -3) lies on the circle $(x 3)^2 + (y + 4)^2 = r^2$. Find the value of r.
- **4.** The line with equation y = 4x 1 does not intersect the circle with equation $x^2 + 2x + y^2 = k$. Find the range of possible values of k.
- 5. The points (-2,8), (7,7), (-3,-1) lie on a circle. Find the equation of the circle.
- **6.** Use the factor theorem to show whether (x 2) is a factor of $x^3 + x^2 4x 4$.
- 7. Given that (x 1) is a factor of $5x^3 9x^2 + 2x + a$, find the value of a.
- **8.** Use algebraic division to find the cubic polynomial that arises from $(3x^4 + 8x^3 11x^2 + 2x + 8) \div (3x + 2)$.
- **9.** It is asserted that $a + \frac{1}{a} \ge 2$. Prove that the inequality is true only if a > 0.
- **10.** Prove that, for any distinct positive numbers p and q, $p + q > \sqrt{4pq}$.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

- 1) Differentiate these implicitly: a) $x^2 + y^2 = 3$ b) $2x - y + y^2 = 5$ c) $\sin x + \cos y = 1$ d) $2e^x - 3e^{2y} = y$ e) $\ln 2x + 3 \ln y^2 = x$ [10]
- 2) Find the equation of the tangent to $4 \sin y \sec x = 0$ at $(\frac{\pi}{3}, \frac{\pi}{6})$. [5]
- 3) Differentiate these implicitly:
 - a) $x^{3}y = 5$ b) $xe^{2y} \ln xy = 2$ c) $x \sin y + y^{2} \csc x = 0$ d) $xy - \sin x = e^{y}$ e) $\ln(x + 2) = \ln(2y + 1)$ [16]
- 4) A curve has the equation $3^x + y^2 = (x + 3)y$. Find the equation of the normal to the curve at the point (1,1). [5]
- 5) Find the points of inflection of these functions and determine the intervals over which they are concave or convex.

a)
$$y = x^4 - 54x^2$$
 b) $y = xe^{-x}$ [11]

- 6) Given that $y = e^x \sin x$, show that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0.$ [3]
- 7) The volume of water in a vase is given by $V = 10\pi(e^{0.2h} 1)$ where h = depth of water in the vase. The depth of water is increasing at a rate of 0.6 cm s⁻¹. What is the rate of increase of the volume when the depth is 5cm? [4]
- 8) An inverted cone is being filled with sand at a rate of $10 \ cm^3 s^{-1}$. After 5 seconds the depth of the sand is 20cm. What is the rate of increase of the depth of sand when the depth of sand is 10cm? (Hint: $V = \frac{1}{3}\pi r^2 h$ where both r and h are variables but we can put $\tan \theta = \frac{r}{h}$ and, since θ is not variable, we can substitute for r and reformulate the expression for V with only h as a variable). [6]
- 9) A biological culture is growing exponentially such that the number of bacteria present N at time t minutes is given by $N = 500 \times 1.05^{0.4t}$. Find the rate at which the bacteria are growing when N = 2000. [3]

Total: 63 Marks