

## Pure 47 – Integration: Partial Fractions and Trapezium Rule

Please <u>complete</u> this homework by \_\_\_\_\_\_. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

- **1)** The equation of a circle is  $x^2 + y^2 10x + 2y 23 = 0$ 
  - a) Showing your working clearly, work out
    - i) Its centre ii) its radius
  - b) The line y = x + 2 meets the circle at the points *P* and *Q*. Work out, in exact form, the coordinates of *P* and *Q*.
- 2) Given vectors  $\mathbf{p} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}$  and  $\mathbf{q} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ 
  - a) Evaluate  $3\mathbf{p} + 5\mathbf{q}$
  - b) Write down the unit vector,  $\widehat{q}$  in the direction of q
- 3) Write the Cartesian equation of the curve that is given parametrically by

$$x = \frac{1}{2t+1}, y = \frac{2}{3-t}, t > 3$$

- 4) a) Show that  $\sec^4 x \tan^4 x \equiv \sec^2 x + \tan^2 x$ 
  - b) Find the values in the range  $-\pi \le x \le \pi$  that satisfy  $\sec^4 x \tan^4 x \equiv 5 + \tan^2 x$ . Show your working.
- **5)** Find  $\frac{dy}{dx}$  given that  $5xy y^3 = 7$
- **6)** Use implicit differentiation to prove that the derivative of  $a^x$  is  $a^x \ln a$



## Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1) a) Express  $\frac{3x+5}{(x+1)(x+3)}$  in partial fractions b) Hence, find  $\int \frac{3x+5}{(x+1)(x+3)} dx$  [8]

2) Show that 
$$\int \frac{3}{(t-2)(t+1)} dt = \ln \left| \frac{t-2}{t+1} \right| + c$$
 [7]

- 3) Integrate with respect to x: a)  $\frac{14-}{x^2+2x-8}$  b)  $\frac{3x^2-5}{x^2-1}$  c)  $\frac{x(4x+13)}{(2+x)^2(3-x)}$  [23]
- 4) Find the exact value of: a)  $\int_{1}^{3} \frac{x+3}{x(x+1)} dx$  b)  $\int_{0}^{1} \frac{5x+7}{(x+1)^{2}(x+3)} dx$  [15]



5)

Figure 1

Figure 1 shows a sketch of part of the curve with equation  $y = \sqrt{x^2 + 1}$ ,  $x \ge 0$ .

The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis and the lines x = 1 and x = 2.

The table below shows corresponding values for x and y for  $y = \sqrt{x^2 + 1}$ .



| x | 1     | 1.25 | 1.5   | 1.75  | 2     |
|---|-------|------|-------|-------|-------|
| у | 1.414 |      | 1.803 | 2.016 | 2.236 |

- a) Complete the table above, giving the missing value of y to 3 decimal places.
- b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for the area of R, giving your answer to 2 decimal places.

[4]

[1]

6) The curve C has equation

 $y = 8 - 2^{x-1}, \quad 0 \le x \le 4.$ 

a) Complete the table below with the value of y corresponding to x = 1

| x | 0   | 1 | 2 | 3 | 4 |
|---|-----|---|---|---|---|
| у | 7.5 |   | 6 | 4 | 0 |

b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for  $\int_{0}^{4} (8-2^{x-1}) dx$ .

(3)

(1)



Figure 2 shows a sketch of the curve C with equation  $= 8 - 2^{x-1}$ ,  $0 \le x \le 4$ .

The curve C meets the *x*-axis at the point A and meets the *y*-axis at the point B.



(2)

The region R, shown shaded in Figure 2, is bounded by the curve C and the straight line through A and B.

c) Use your answer to part (b) to find an approximate value for the area of *R*.



Figure 3

Figure 3 shows a sketch of part of the curve with equation  $y = \sqrt{2x - 1}$ ,  $x \ge 0.5$ .

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the lines with equations x = 2 and x = 10.

The table below shows corresponding values of x and y for  $y = \sqrt{2x - 1}$ .

| x | 2  | 4 | 6   | 8 | 10          |
|---|----|---|-----|---|-------------|
| у | √3 |   | √11 |   | <b>√</b> 19 |

a) Complete the table with the values of y corresponding to x = 4 and x = 8.

[1]

b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for the area of R, giving your answer to 2 decimal places.

[3]

c) State, giving a reason, whether your approximate value in part (b) is an overestimate or an underestimate for the area of R.

[2]

Total: 69 Marks