

Paper 3: Statistics and Mechanics Mark Scheme

vestion	Scheme Scheme	Marks	AOs
1(a)	Area = $8 \times 1.5 = 12 \text{ cm}^2$ Frequency = $8 \text{ so } 1 \text{ cm}^2 = \frac{2}{3}$ hour (o.e.)	M1	3.1a
	Frequency of 12 corresponds to area of 18 so height = $1.8 \div 2.5 = 7.2$ (cm)	A1	1.1b
	Width = $5 \times 0.5 = 2.5$ (cm)	B1cao	1.16
		(3)	
(b)	$[\bar{y} =] \frac{205.5}{31} = \text{awrt } 6.63$	B1cao	1.1t
	$\left[\sigma_{y}=\right]\sqrt{\frac{1785.25}{31}-\overline{y}^{2}} = \sqrt{13.644641} = \text{awrt } 3.69$		
	1795 25 21=2	M1	1.1a
	allow $[s=] \sqrt{\frac{1785.25 - 31\overline{y}^2}{30}} = \mathbf{awrt} \ 3.75$	A1	1.11
		(3)	
(c)	Mean of Heathrow is higher than Hurn and standard deviation smaller suggesting Heathrow is more reliable	M1	2,4
	Hurn is South of Heathrow so does not support his belief	A1	2.21
		(2)	
(d)	$\overline{x} + \sigma \approx 10.3$ so number of days is e.g. $\frac{(11 - "10.3")}{3} \times 8 \ (+5)$	M1	1.1
	= 6.86 so 7 days	A1	1.1
		(2)	
(e)	[$H = \text{no. of hours}$] $P(H > 10.3)$ or $P(Z > 1) = [0.15865]$	M1	3.4
	Predict $31 \times 0.15865 = 4.9 \text{ or } 5 \text{ days}$	A1	1.1
		(2)	
(f)	(5 or) 4.9 days < (7 or) 6.9 days so model may not be suitable	B1	3.5
		(1)	<u></u>
		(13 1	nark

Ques	tion 1 continued
Note	S:
(a)	
M1:	for clear attempt to relate the area to frequency. Can also award if
	their height \times their width = 18
A1:	for height = 7.2 (cm)
(b)	
M1:	for a correct expression for σ or s , can ft their value for mean
A1:	awrt 3.69 (allow $s = 3.75$)
(c)	
M1:	for a suitable comparison of standard deviations to comment on reliability.
A1:	for stating Hurn is south of Heathrow and a correct conclusion
(d)	
M1:	for a correct expression – ft their $\bar{x} + \sigma \approx 10.3$
A1:	for 7 days but accept 6 (rounding down) following a correct expression
(e)	
M1:	for a correct probability attempted
A1:	for a correct prediction
(f) B1:	for a suitable comparison and a compatible conclusion

Quest	on Scheme	Mariks	AOs.		
2(a)	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2		
		(1)			
(b)	e.g. Linear association between w and t	В1	1.2		
		(1)			
(c)	H ₀ : $\rho = 0$ H ₁ : $\rho > 0$	B1	2.5		
	Critical value 0.5822	M1	1.1a		
	Reject H ₀				
	There is evidence that the product moment correlation coefficient is greater than 0	A1	2.2b		
		(3)			
(d)	(d) Higher \bar{t} suggests overseas and not Perthlower wind speed so perhaps not close to the sea so suggest Beijing		2.4		
		(1)			
			6 marks)		
Notes:					
(a) B1:	for a correct statement (unreliable) with a suitable reason				
(b)					
B1:	for a correct statement				
(c)					
B1:	for both hypotheses in terms of ρ				
M1:	for selecting a suitable 5% critical value compatible with their H ₁ for a correct conclusion stated				
(d)	101 (1001000 00110001100001				
B1:	for suggesting Beijing with some supporting reason based on t or w Allow Jacksonville with a reason based just on higher \overline{t}				

Question	Scheme	Manks	AOs
Q3(a)	49 50.75		
	P(L > 50.98) = 0.025	B1cao	3.4
	$\therefore \frac{50.98 - \mu}{0.5} = 1.96$	M1	1.1b
	$\therefore \mu = 50$	A1cao	1.1b
	P(49 < L < 50.75)	M1	3.4
	= 0.9104 awrt <u>0.910</u>	A1ft	1.1b
		(5)	······
(b)	$S =$ number of strips that cannot be used so $S \sim B(10, 0.090)$	M1	3.3
	$= P(S \le 3) = 0.991166$ awrt 0.991	A1,	1.1b
		(2)	
(c)	$H_0: \mu = 50.1$ $H_1: \mu > 50.1$	B1	2.5
	$\bar{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\bar{X} > 50.4$	M1	3.3
	$P(\bar{X} > 50.4) = 0.0264$	A 1	3.4
	p = 0.0264 > 0.01 or $z = 1.936 < 2.3263$ and not significant	A 1	1.1b
	There is insufficient evidence that the <u>mean length</u> of strips is <u>greater than 50.1</u>	A1	2.2b
		(5)	
		(12	2 marks)

Question 3 continued

Notes:

(a)

1st M1: for standardizing with μ and 0.5 and setting equal to a z value (|z| > 1)

2nd M1: for attempting the correct probability for strips that can be used

2nd A1ft: awrt 0.910 (allow ft of their μ)

(b)

M1: for identifying a suitable binomial distribution

A1: awrt 0.991 (from calculator)

(c)

B1: hypotheses stated correctly

M1: for selecting a correct model (stated or implied)

1st A1: for use of the correct model to find p = awrt 0.0264 (allow z = awrt 1.94)

2nd A1: for a correct calculation, comparison and correct statement

 3^{rd} A1: for a correct conclusion in context mentioning "mean length" and 50.1

Question	Scheme	Marks	A0.6
4(a)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1	3.1a
	$=\frac{3}{5}$ or 0.6	A1	1.1b
		(2)	
(b)	e.g. $P(A) \times P(B) = \frac{7}{20} \times \frac{9}{20} = \frac{63}{400} \neq P(A \cap B) = 0.13 = \frac{52}{400}$ or $P(A' \mid B') = 0.6 \neq P(A') = 0.65$	B1	2.4
		(1)	
(c)		B1	2.5
	В	M1	3.1a
	A C	A1	1.1b
	0,22 (0,13) 0,23 (0,09) 0.11	M1	1.1b
		A1	1.1b
		(5)	
(d)	$P(B \cup C)' = 0.22 + 0.22 \text{ or } 1-[0.56]$ or $1-[0.13+0.23+0.09+0.11]$ o.e.	M1	1.1b
	= 0.44	A1	1.1b
		(2)	
		(1	0 marks)

Notes:

(a)

M1: for a correct ratio of probabilities formula and at least one correct value.

A1: a correct answer

(b)

for a fully correct explanation: correct probabilities and correct comparisons.

(c)

B1: for box with B intersecting A and C but C not intersecting A.(Or accept three intersecting circles, but with zeros entered for $A \cap C$ and $A \cap B \cap C$)No box is B0

M1: for method for finding $P(B \cap C)$

A1:

M1: for 0.13 and their 0.09 in correct places and method for their 0.23

fully correct **A1:**

(d)

M1: for a correct expression – ft their probabilities from their Venn diagram.

A1: cao

Questio	n Scheme	Marks	AOs
5 (a)	The seeds would be destroyed in the process so they would have none to sell	B1	2.4
		(1)	
(b)	[$S = \text{no. of seeds out of 24 that germinate}, S \sim B(24, 0.55)$]		
	$T = \text{no. of trays with at least 15 germinating. } T \sim B(10, p)$	M1	3.3
	$p = P(S \ge 15) = 0.299126$	A1	1.1b
	So $P(T \ge 5) = 0.1487$ awrt 0.149	A1	1.1b
		(3)	
(c)	n is large and p close to 0.5	B1	1.2
		(1)	
(d)	<i>X</i> ~N(132, 59.4)	B1	3.4
	$P(X \ge 149.5) = P\left(Z \ge \frac{149.5 - 132}{\sqrt{59.4}}\right)$	M1	1.1b
	= 0.01158 awrt <u>0.0116</u>	Alcso	1.1b
		(3)	
(e)	e.g The probability is very small therefore there is evidence that the company's claim is incorrect.	B1	2.2b
		(1)	
		(9 marks)
Notes:			
(a) B1: ca	ao		
1st A1: fo	or selection of an appropriate model for T or a correct value of the parameter p (accept 0.3 or better) for awrt 0.149		
(c) B1: be	oth correct conditions		
	or correct normal distribution or correct use of continuity correction		
(e) B1: co	orrect statement		

Quesilion	Scheme	Marks	AOs
6	Integrate a w.r.t. time	M1	1.1a
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + \mathbf{C} \text{ (allow omission of } \mathbf{C})$	A1	1.1b
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + 20\mathbf{i}$	A 1	1.1b
	When $t = 4$, $\mathbf{v} = 60\mathbf{i} - 80\mathbf{j}$	M1	1.1b
	Attempt to find magnitude: $\sqrt{(60^2 + 80^2)}$	M1	3.1a
	$Speed = 100 \text{ m s}^{-1}$	A1 ft	1.1b
			(6 marks)

Notes:

1st M1: for integrating a w.r.t. time (powers of t increasing by 1)

 1^{st} A1: for a correct v expression without C

 $2^{nd} \; A1:$ for a correct v expression including C

 2^{nd} M1: for putting t = 4 into their v expression

 3^{rd} M1: for finding magnitude of their v

3rd A1: ft for 100 m s⁻¹, follow through on an incorrect v

Question	Scheme	Marks	AVOs
7(a)	$R = mg\cos\alpha$	B1	3.1b
	Resolve parallel to the plane	M1	3.1b
	$-F - mg\sin\alpha = -0.8mg$	A1	1.1b
	$F = \mu R$	M1	1.2
	Produce an equation in μ only and solve for μ	M1	2.2a
	$\mu = \frac{1}{4}$	A1	1.1b
		(6)	
(b)	Compare $\mu mg \cos \alpha$ with $mg \sin \alpha$	M1	3.1b
	Deduce an appropriate conclusion	A1 ft	2.2a
		(2)	

(8 marks)

Notes:

(a)

B1: for $R = mg\cos\alpha$

1st M1: for resolving parallel to the plane

1st A1: for a correct equation

2nd M1: for use of $F = \mu R$

 3^{rd} M1: for eliminating F and R to give a value for μ

2nd **A1:** for $\mu = \frac{1}{4}$

(b)

M1: comparing size of limiting friction with weight component down the plane

A1ft: for an appropriate conclusion from their values

Questio		Marks	AOs
8(a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t : (10.5\mathbf{i} - 0.9\mathbf{j}) = 0.6\mathbf{j} + 15\mathbf{a}$	M1	3.1b
	$\mathbf{a} = (0.7\mathbf{i} - 0.1\mathbf{j}) \text{ m s}^{-2}$ Given answer	A1	1.1b
		(2)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(b)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b
	$\mathbf{r} = 0.6\mathbf{j} \ t + \frac{1}{2} (0.7\mathbf{i} - 0.1\mathbf{j}) \ t^2$	A1	1.1b
······		(2)	
(c)	Equating the i and j components of r	M1	3.1b
	$\frac{1}{2} \leftarrow 0.7 t^2 = 0.6 t - \frac{1}{2} \leftarrow 0.1 t^2$	A1ft	1.1b
	t=1.5	A1	1.1b
		(3)	
(d)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$: $\mathbf{v} = 0.6\mathbf{j} + (0.7\mathbf{i} - 0.1\mathbf{j}) t$	M1	3.1b
	Equating the i and j components of v	M1	3.1b
	t = 0.75	A1 ft	1.1b
		(3)	
***************************************		(10	0 marks
Notes:			
(a) M1: for	use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$		
	given answer correctly obtained		
(b)	•		·······
M1: for	use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2} \mathbf{a}t^2$		
A1: for	for a correct expression for \mathbf{r} in terms of t		
(c)			
	for equating the i and j components of their r		
	for a correct equation following their \mathbf{r} for $t = 1.5$		
	U. I — 1		······································
(d)			

M1:

M1:

for use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ for a general t

for equating the i and $\ j$ components of their $\ v$

A1ft: for t = 0.75, or a correct follow through answer from an incorrect equation

Question	Scheme :	Marks	AOs
9(a)	Take moments about A		
	(or any other complete method to	M1	3.3
	produce an equation in S , W and α only)		
	$Wa\cos\alpha + 7W2a\cos\alpha = S2a\sin\alpha$	A1	1.1b
	77 40054 1 777 240054 15 245Hit	A1	1.1b
	Use of $\tan \alpha = \frac{5}{2}$ to obtain S	M1	2.1
	S = 3W *	A1*	2.2a
		(5)	
(b)	R = 8W	B1	3.4
	$F = \frac{1}{4} R (= 2W)$	M1	3.4
	$P_{\text{MAX}} = 3W + F \text{ or } P_{\text{MIN}} = 3W - F$	M1	3.4
	$P_{\text{MAX}} = 5W \text{ or } P_{\text{MIN}} = W$	A1	1.1b
	$W \le P \le 5W$	A1	2.5
		(5)	
(c)	M(A) shows that the reaction on the ladder at B is unchanged	M1	2.4
	also R increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
			13 marks)

Question 9 continued

Notes:

(a)

1st M1: for producing an equation in S, W and α only

1st A1: for an equation that is correct, or which has one error or omission

2nd A1: for a fully correct equation

2nd M1: for use of $\tan \alpha = \frac{5}{2}$ to obtain S in terms of W only

 3^{rd} A1*: for given answer S = 3W correctly obtained

(b)

B1: for R = 8W

1st M1: for use of $F = \frac{1}{4} R$

2nd M1: for either P = (3W + their F) or P = (3W - their F)

 1^{st} A1: for a correct max or min value for a correct range for P

 2^{nd} A1: for a correct range for P

(c)

1st M1: for showing, by taking moments about A, that the reaction at B is unchanged by the builder's assistant standing on the bottom of the ladder

 2^{nd} M1: for showing, by resolving vertically, that R increases as a result of the builder's assistant standing on the bottom of the ladder

3rd M1: for concluding that this increases the limiting friction at A

Question	Scheme 3.	Marks	AOs
10(a)	Using the model and horizontal motion: $s = ut$	M1	3.4
	$36 = Ut\cos\alpha$	A1	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$-18 = Ut\sin\alpha - \frac{1}{2}gt^2$	A1	1.1b
	Correct strategy for solving the problem by setting up two equations in t and U and solving for U	M1	3.1b
	U=15	A1	1.1b
		(6)	,,,,,,
(b)	Using the model and horizontal motion: $U\cos\alpha$ (12)	B1	3.4
	Using the model and vertical motion: $v^2 = (U\sin\alpha)^2 + 2(-10)(-7.2)$	M1	3.4
	v = 15	A1	1.1b
	Correct strategy for solving the problem by finding the horizontal and vertical components of velocity and combining using Pythagoras: Speed = $\sqrt{(12^2 + 15^2)}$	M1	3.1b
	$\sqrt{369} = 19 \text{ m s}^{-1} \text{ (2sf)}$	A1 ft	1.1b
		(5)	
(c)	Possible improvement (see below in notes)	B1	3.5c
	Possible improvement (see below in notes)	В1	3.5c
		(2)	
		((13 marks)

Question 10 continued

Notes:

(a)

1st M1: for use of s = ut horizontally

1st A1: for a correct equation

2nd M1: for use of $s = ut + \frac{1}{2}at^2$ vertically

2nd A1: for a correct equation

3rd M1: for correct strategy (need both equations)

2nd A1: for U = 15

(b)

B1: for $U\cos\alpha$ used as horizontal velocity component

1st M1: for attempt to find vertical component

1st A1: for 15

2nd M1: for correct strategy (need both components)

2nd A1ft: for 19 m s⁻¹ (2sf) following through on incorrect component(s)

(c)

B1, B1: for any two of

e.g. Include air resistance in the model of the motion

e.g. Use a more accurate value for g in the model of the motion

e.g. Include wind effects in the model of the motion

e.g. Include the dimensions of the stone in the model of the motion