- 1 A curve has the equation $x = \sqrt{y}$.
 - **a** Write down $\frac{dx}{dy}$ in terms of y.
 - **b** Express the equation of the curve in the form y = f(x).
 - **c** Write down $\frac{dy}{dx}$ in terms of x.
 - **d** Hence verify that for this curve, $\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)}$.
- 2 Verify the relationship $\frac{dy}{dx} \times \frac{dx}{dy} = 1$ when

a
$$y = e^{2x-1}$$
,

b
$$y = x^3 + 2$$
,

$$\mathbf{c} \quad x = \sqrt{\ln y}$$
.

3 Find expressions for $\frac{dy}{dx}$ in terms of y in each case.

a
$$x = y^2 + 3$$

b
$$x = (y-1)^3$$

$$\mathbf{c} \quad x = \tan y$$

d
$$x = \ln(3y + 2)$$

$$\mathbf{e} \quad x = \sin^2 y$$

$$\mathbf{f} \quad x = \frac{y - 2}{\mathrm{e}^y}$$

- 4 The curve C has the equation $x = y^3 4y^2$.
 - **a** Find $\frac{dx}{dy}$ in terms of y.
 - **b** Find an equation for the tangent to C at the point on the curve with y-coordinate 3.
- Given that $y = \ln (ax + b)$, where a and b are constants,
 - **a** express x as a function of y,
 - **b** find $\frac{dx}{dy}$ in terms of y.
 - **c** Hence, prove that $\frac{d}{dx} [\ln (ax + b)] = \frac{a}{ax + b}$.
- 6 A curve has the equation $y = 3^x$.
 - **a** Express the equation of the curve in the form x = f(y).
 - **b** Find $\frac{dx}{dy}$ in terms of y.
 - **c** Hence, find $\frac{dy}{dx}$ in terms of x.
 - **d** Find an equation for the tangent to the curve at the point (2, 9).