C3 > NUMERICAL METHODS

1 a let
$$f(x) = x^3 - 7x - 11$$

 $f(3) = -5$
 $f(4) = 25$
sign change, $f(x)$ continuous ∴ root
b $x_1 = 3.230712$
 $x_2 = 3.225651$
 $x_3 = 3.226479 = 3.23$ (2dp)

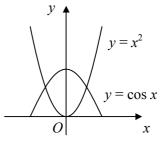
3 a f(0.4) = -0.809 f(0.5) = 0.307sign change, f(x) continuous ∴ root ∴ 0.4 < α < 0.5 b $x_1 = 0.468857$

$$x_2 = 0.463841 x_3 = 0.465157 x_4 = 0.464810$$

$$\therefore \alpha = 0.465 \, (3dp)$$

5 **a**
$$f(1.4) = 3.65$$

 $f(1.5) = -0.205$
sign change, $f(x)$ continuous \therefore root
b $e^{5-2x} - x^5 = 0 \implies x^5 = e^{5-2x}$
 $\implies x = (e^{5-2x})^{\frac{1}{5}}$
 $\implies x = e^{1-\frac{2}{5}x}, \ k = \frac{2}{5}$
c $x_1 = 1.491825$
 $x_2 = 1.496711$
 $x_3 = 1.493789 = 1.494$ (3dp)


Answers - Worksheet C

a f(4) = -2.29 (3sf) f(5) = 0.829 (3sf) b sign change, f(x) continuous ∴ root c 4 cosec x - 5 + 2x = 0 2x = 5 - 4 cosec x $x = 2.5 - \frac{2}{\sin x}$, a = 2.5, b = -2d $x_1 = 4.545973$ $x_2 = 4.528018$ $x_3 = 4.534481 = 4.534$ (3dp)

4

a

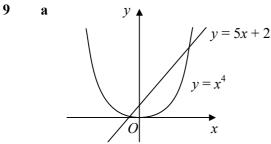
2

- **b** $\cos x x^2 = 0 \implies \cos x = x^2$ the graphs $y = \cos x$ and $y = x^2$ intersect at 2 points, one for x < 0 and one for x > 0 \therefore one negative and one positive real root
- c let $f(x) = \cos x x^2$ f(0.8) = 0.0567 f(0.9) = -0.188sign change, f(x) continuous ∴ root
- **d** $x_1 = 0.834690$ $x_2 = 0.819395$ $x_3 = 0.826235$ $x_4 = 0.823195$ $x_5 = 0.824550$ ∴ root = 0.82 (2dp)
- **a** f(1.3) = -0.341 f(1.4) = 0.383 sign change, f(x) continuous ∴ root
 - **b** $x_1 = 1.331571$

$$x_2 = 1.354168$$

$$x_3 = 1.346907$$

$$x_4 = 1.349261$$


- **c** 1.35 (3sf)
- **d** diverges leading to ln of a –ve which is not real

6

C3 NUMERICAL METHODS

Answers - Worksheet C page 2

a f'(x) = $6x^2 + 4$ 7 **b** for all real x, $x^2 \ge 0$ $6x^2 + 4 > 0$ \Rightarrow \therefore f(x) increasing for all x \therefore y = f(x) only crosses x-axis once so exactly 1 real root c f(1.2) = -0.744f(1.3) = 0.594sign change, f(x) continuous \therefore root **d** $x_1 = 1.280579$ $x_2 = 1.246945$ $x_3 = 1.261203$ $x_4 = 1.255199$ \therefore root = 1.26 (2dp) **e** f(1.255) = -0.0267f(1.265) = 0.109sign change, f(x) continuous \therefore root

b
$$x^4 - 5x - 2 = 0 \implies x^4 = 5x + 2$$

the graphs $y = x^4$ and $y = 5x + 2$ intersect
at 2 points, one for $x < 0$ and one for $x > 0$
 \therefore one negative and one positive real root
c $x_1 = 1.821160$
 $x_2 = 1.825524$

$$r_2 = 1.826420$$

$$x_{4} = 1.826603 = 1.827 \text{ (3dp)}$$

$$d \quad x^{4} - 5x - 2 = 0 \implies x^{4} - 5x = 2$$

$$\implies x(x^{3} - 5) = 2$$

$$\implies x = \frac{2}{x^{3} - 5}, \ a = 2, \ b = -5$$

e
$$x_1 = -0.394945$$

 $x_2 = -0.395132$
 $x_3 = -0.395125$
 \therefore root = -0.3951 (4dp)

a
$$3x + \ln x - x^2 = x \implies \ln x = x^2 - 2x$$

 $\implies x = e^{x^2 - 2x}$
b let $f(x) = 2x + \ln x - x^2$
 $f(0.4) = -0.276$
 $f(0.5) = 0.0569$
sign change, $f(x)$ continuous \therefore root
c $f(2.3) = 0.143$
 $f(2.4) = -0.0845$
sign change, $f(x)$ continuous \therefore root
d $x_1 = 0.472367$
 $x_2 = 0.485973$
 $x_3 = 0.479134$
 $x_4 = 0.482537$
 \therefore x-coord of $A = 0.48$ (2dp)
e $f(0.475) = -0.0201$
 $f(0.485) = 0.0112$

8

sign change, f(x) continuous \therefore root