Worksheet D

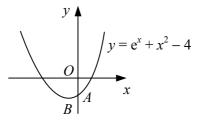
(3)

(3)

(4)

(3)

NUMERICAL METHODS



The diagram shows the curve $y = e^x + x^2 - 4$. The curve intersects the y-axis at the point A and has a stationary point at B.

a Find
$$\frac{dy}{dx}$$
. (1)

- **b** Find an equation for the tangent to the curve at *A*. (2)
- **c** Show that the *x*-coordinate of *B* lies in the interval [-0.4, -0.3].
- **d** Using the iteration formula $x_{n+1} = \frac{1}{3}(x_n e^{x_n})$, with $x_0 = -0.3$, find the *x*-coordinate of *B* correct to 3 decimal places. (4)
- 2 The function f is defined by

$$f(x) \equiv \sin (x-6) - \ln (x^2 + 1), \ x \in \mathbb{R},$$

where x is measured in radians.

The equation f(x) = 0 has a root in the interval k < x < k + 1, where k is a positive integer.

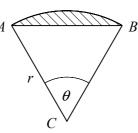
a Find the value of *k*.

b Use the iteration formula $x_{n+1} = \sqrt{e^{\sin(x_n-6)} - 1}$, with $x_0 = k$, to find three further approximations for this root, giving your answers to 4 decimal places. (3)

3

C3

1



The diagram shows a sector *ABC* of a circle, centre *C*, radius *r*. Angle *ACB* is θ radians. Given that the ratio of the area of the shaded segment to the area of triangle *ABC* is 1:4,

- **a** show that $4\theta 5\sin\theta = 0$,
- **b** use the iterative formula $\theta_{n+1} = \frac{5}{4} \sin \theta_n$, with $\theta_0 = 1.1$, to find the value of θ correct to 2 decimal places. (4)

4

 $f: x \to e^{x^2} - x - 3, x \in \mathbb{R}.$

The equation f(x) = 0 can be rearranged into the iterative form $x_{n+1} = \sqrt{\ln(ax_n + b)}$.

a Find the values of the constants *a* and *b* in this formula.

The equation f(x) = 0 has a solution in the interval (1, 2).

b Using the iterative formula with your values from part a and a suitable starting value, find this solution correct to 3 decimal places. (4)

(4)

(3)

(2)

5

$$f: x \to x^2 - 9, x \in \mathbb{R}, x \ge 0$$

$$g: x \to x^3, x \in \mathbb{R}.$$

a Find
$$f^{-1}(x)$$
 and state its domain and range.

- **b** On the same set of axes, sketch the curves y = f(x) and $y = f^{-1}(x)$. (2)
- c Show that the equation $f^{-1}(x) + g(x) = 0$ has a root in the interval [-2, -1]. (3)
- **d** Use the iterative formula $x_{n+1} = -(x_n + 9)^{\frac{1}{6}}$, with $x_0 = -1$, to find this root correct to 3 decimal places. (4)

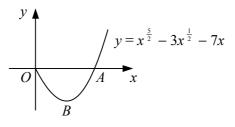
6

a On the same diagram, sketch the curves $y = \frac{1}{x}$ and $y = |-x^2 - 3x|$, showing the coordinates of any points of intersection with the coordinate axes.

The curves intersect at the point P.

- **b** Show that the *x*-coordinate of *P* can be found by solving the equation $x^3 + 3x^2 1 = 0$. (3)
- c Use the iteration formula $x_{n+1} = \frac{1}{\sqrt{x_n + 3}}$, with $x_0 = 0$, to find the *x*-coordinate of *P* correct to 3 decimal places. (4)

7



The diagram shows the curve $y = x^{\frac{5}{2}} - 3x^{\frac{1}{2}} - 7x$, $x \ge 0$, which crosses the *x*-axis at the point *A*, where $x = \alpha$, and has a stationary point at *B*, where $x = \beta$.

Show that

 $\mathbf{a} \quad 4 < \alpha < 5, \tag{2}$

$$\mathbf{b} \quad 2 < \beta < 3, \tag{4}$$

c $x = \beta$ is a solution to the equation $x = \sqrt{0.6 + 2.8x^{\frac{1}{2}}}$. (3)

d Use the iterative formula $x_{n+1} = \sqrt{0.6 + 2.8x_n^{\frac{1}{2}}}$, with $x_0 = 2.1$, to find β correct to 4 significant figures. (4)

- 8 The curve with equation $y = 3x \ln x$ passes through the point P (1, 3).
 - **a** Find an equation for the normal to the curve at *P*. (4)

The normal to the curve at P intersects the curve again at the point Q.

b Show that the *x*-coordinate of *Q* satisfies the equation

$$2\ln x - 7x + 7 = 0. \tag{1}$$

The *x*-coordinate of *Q* is to be found using an iteration of the form $x_{n+1} = e^{k(x_n-1)}$.

- cFind the value of the constant k.(2)dUsing $x_0 = 0.5$, find the x-coordinate of Q correct to 3 decimal places.(4)
- e Justify the accuracy of your answer to part **d**.