1	Prove, by counter-example, that each of the following statements is false.	
	a For all positive real values of x, $\sqrt[3]{x} \le x$.	(2)
	b For all positive integer values of n , $(n^3 - n + 7)$ is prime.	(2)
2	Use proof by contradiction to prove that $\sqrt{\pi}$ is irrational.	
	(You may assume that π is irrational).	(4)
3	Find a counter-example to prove that the statement	
	" $15x^2 - 11x + 2 \ge 0$ for all real values of x"	
	is false.	(4)
4	a Given that $n = 2m + 1$, find and simplify an expression in terms of m for $n^2 + 2n$.	(1)
	b Hence, use proof by contradiction to prove that if $(n^2 + 2n)$ is even, where <i>n</i> is an integer, then <i>n</i> is even.	(5)
5	a Prove that if the equation	
	$k\cos x - \csc x = 0,$	
	where k is a constant, has real solutions, then $ k \ge 2$.	(5)
	b Find the values of x in the interval $0 \le x \le 360$ for which	
	$3\cos x^{\circ} - \csc x^{\circ} = 0.$	(3)
6	Use proof by contradiction to prove that there are no positive integers, x and y, such that	
	$x^2 - y^2 = 1.$	(6)
7	For each statement, either prove that it is true or find a counter-example to prove that it is false.	
	a If a and b are irrational and $a \neq b$, then $(a + b)$ is irrational.	(2)
	b If <i>m</i> and <i>n</i> are consecutive odd integers, then $(m + n)$ is divisible by 4.	(3)
	c For all real values of x , $\cos x \le 1 + \sin x$.	(2)
8	a Show that if $\log_2 3 = \frac{p}{q}$, then	
	$2^p = 3^q$.	(2)
	b Use proof by contradiction to prove that $\log_2 3$ is irrational.	(4)
	c Prove, by counter-example, that the statement	
	"if a is rational and b is irrational then $\log_a b$ is irrational"	
	is false.	(2)
9	The function f is defined by	
	f: $x \to \frac{x-2}{4x}, x \in \mathbb{R}, x \neq 0.$	
	a Find an expression for the inverse function, $f^{-1}(x)$, and state its domain.	(5)
	b Prove that there are no real values of x for which	
	$f(x) = f^{-1}(x).$	(4)
		(9

C3

PROOF

$$f(x) = f^{-1}(x).$$
 (4)

© Solomon Press