TRIGONOMETRY

C3

1	Find all values of x in the interval $0 \le x \le 360^\circ$ for which $\tan^2 x - \sec x = 1$.	(6)
	$\tan x - \sec x - 1$.	(0)
2	 a Express 2 cos x° + 5 sin x° in the form R cos (x - α)°, where R > 0 and 0 < α < 90. Give the values of R and α to 3 significant figures. b Solve the equation 2 cos x° + 5 cos x° = 3, 	(4)
	for values of x in the interval $0 \le x \le 360$, giving your answers to 1 decimal place.	(4)
3	 a Solve the equation π - 6 arctan 2x = 0, giving your answer in the form k√3. b Find the values of x in the interval 0 ≤ x ≤ 360° for which 2 sin 2x = 3 cos x, 	(4)
	giving your answers to an appropriate degree of accuracy.	(6)
4	a Use the identities for $\sin (A + B)$ and $\sin (A - B)$ to prove that $\sin P - \sin Q \equiv 2 \cos \frac{P+Q}{2} \sin \frac{P-Q}{2}$.	(4)
	b Hence, or otherwise, find the values of x in the interval $0 \le x \le 180^\circ$ for which $\sin 4x = \sin 2x$.	(6)
5	 a Prove the identity (2 sin θ - cosec θ)² ≡ cosec² θ - 4 cos² θ, θ ≠ nπ, n ∈ Z. b i Sketch the curve y = 3 + 2 sec x for x in the interval 0 ≤ x ≤ 2π. ii Write down the coordinates of the point where the curve meets the y-axis. iii Find the coordinates of the points where the curve crosses the x-axis in this interval. 	(3) (7)
6	a Find the exact values of <i>R</i> and α , where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$, for which $\cos x - \sin x \equiv R \cos (x + \alpha)$.	(3)
	b Using the identity $\cos X + \cos Y \equiv 2 \cos \frac{X+Y}{2} \cos \frac{X-Y}{2},$ or otherwise, find in terms of π the values of x in the interval [0, 2π] for which	(-)
	$\cos x + \sqrt{2} \cos \left(3x - \frac{\pi}{4}\right) = \sin x.$	(7)
7	a Prove the identity $\cot 2x + \csc 2x \equiv \cot x, x \neq \frac{n\pi}{2}, n \in \mathbb{Z}.$	(4)

b Hence, for *x* in the interval $0 \le x \le 2\pi$, solve the equation

$$\cot 2x + \csc 2x = 6 - \cot^2 x,$$

giving your answers correct to 2 decimal places.

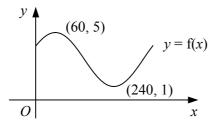
(6)

(4)

(2)

(7)

8 a Prove that for all real values of x


$$\cos(x+30)^{\circ} + \sin x^{\circ} \equiv \cos(x-30)^{\circ}.$$
 (4)

- **b** Hence, find the exact value of $\cos 75^\circ \cos 15^\circ$, giving your answer in the form $k\sqrt{2}$. (3)
- c Solve the equation

$$3\cos(x+30)^\circ + \sin x^\circ = 3\cos(x-30)^\circ + 1$$

for *x* in the interval $-180 \le x \le 180$.

9

The diagram shows the curve y = f(x) where

$$f(x) \equiv a + b \sin x^{\circ} + c \cos x^{\circ}, \ x \in \mathbb{R}, \ 0 \le x \le 360,$$

- The curve has turning points with coordinates (60, 5) and (240, 1) as shown.
- **a** State, with a reason, the value of the constant *a*.
- **b** Find the values of k and α , where k > 0 and $0 < \alpha < 90$, such that

$$f(x) = a + k \sin (x + \alpha)^{\circ}.$$
(3)

- c Hence, or otherwise, find the exact values of the constants b and c. (3)
- **10 a** Prove the identity

$$\frac{1-\cos x}{1+\cos x} \equiv \tan^2 \frac{x}{2}, \quad x \neq (2n+1)\pi, \ n \in \mathbb{Z}.$$
(4)

- **b** Use the identity in part **a** to
 - i find the value of $\tan^2 \frac{\pi}{12}$ in the form $a + b\sqrt{3}$, where a and b are integers,
 - ii solve the equation

6

$$\frac{1-\cos x}{1+\cos x} = 1 - \sec \frac{x}{2}$$

for x in the interval $0 \le x \le 2\pi$, giving your answers in terms of π . (9)

11 a Prove that there are no real values of *x* for which

$$\cot^2 x - \csc x + 5 = 0. \tag{4}$$

b Find the values of y in the interval $0 \le y \le 180^\circ$ for which $\cos 5y = \cos y.$ (6)

12 a Use the identities for $\cos(A+B)$ and $\cos(A-B)$ to prove that

$$\sin A \sin B \equiv \frac{1}{2} [\cos (A - B) - \cos (A + B)].$$
 (2)

b Hence, or otherwise, find the values of x in the interval $0 \le x \le \pi$ for which

$$4\sin\left(x+\frac{\pi}{3}\right) = \csc\left(x-\frac{\pi}{6}\right),$$

giving your answers as exact multiples of π .

© Solomon Press