EdExcel Statistics 2

Hypothesis Tests

Section 1: Introducing Hypothesis Testing

Solutions to Exercise

1. Let p be the probability that a student gets an A or B grade.

 $H_0: p = 0.4$ $H_1: p < 0.4$

Significance level = 5%

Let X be the number of students who get an A or B grade For X ~ B(15, 0.4), $P(X \le 2) = 0.0271 < 0.05$ Reject Ho. There is evidence to suggest that the A and B pass-rate has decreased.

2. Let p be the probability of obtaining a head

 $H_0: p = 0.5$ $H_1: p > 0.5$

Significance level = 5%

(i) Let X be the number of heads obtained For $X \sim B(10, 0.5), P(X \ge 8) = 1 - P(X \le 7)$

=1-0.9453 =0.0547>0.05

Accept Ho. There is not sufficient evidence to suggest that the coin is biased towards heads.

(ii) Let X be the number of heads obtained For X ~ B(20, 0.5), P(X \ge 16) = 1 - P(X \le 15) = 1 - 0.9941

Reject Ho. There is evidence to suggest that the coin is biased towards heads.

(iii) Let x be the number of heads obtained. Need the lowest possible value of a for which $P(X \ge a) < 0.05$

 $\Rightarrow 1 - P(X \le a - 1) < 0.05$ $\Rightarrow P(X \le a - 1) > 0.95$

© MEI, 16/01/12

For $\mathbb{B}(50, 0.5)$, $\mathbb{P}(X \le 30) = 0.9405$ $\mathbb{P}(X \le 31) = 0.9675$

The lowest possible value of a - 1 is 31, so the lowest possible value of a is 32. The critical region is $X \ge 32$.

3. Let λ be the mean number of houses sold during the month of June.

 $H_0: \lambda = 6$ $H_1: \lambda < 6$

Significance level = 5%

Let X be the number of houses sold in June. For X ~ Po(6), $P(X \le 2) = 0.0620 > 0.05$ Accept H₀. There is not sufficient evidence to suggest that the mean number of houses sold during June has decreased.

4. Let p be the probability that a passenger loses his suitcase

 $H_0: p = 0.05$ $H_1: p > 0.05$

Significance level = 5%

Let X be the number of times a passenger loses his suitcase For $X \sim B(25, 0.05)$: $P(X \ge 3) = 1 - P(X \le 2)$ = 1 - 0.8729= 0.1271 > 0.05

Accept Ho. There is not sufficient evidence to suggest that the true probability is greater than 0.05.

5. Let p be the probability that a seed germinates.

 $H_{0}: p = 0.65$ $H_{1}: p \neq 0.65$ Significance level = 5%

Let X be the number of seeds that germinate, so $X \sim B(40, 0.65)$ Let Y be the number of seeds that do not germinate, so $Y \sim B(40, 0.35)$

For lower tail, need the highest possible value of a for which $P(X \le a) < 0.025$.

 $P(X \le a) < 0.025 \implies P(Y \ge 40 - a) < 0.025$ $\implies 1 - P(Y \le 39 - a) < 0.025$ $\implies P(Y \le 39 - a) > 0.975$

For B(40, 0.35), $P(\gamma \le 19) = 0.9637$ $P(\gamma \le 20) = 0.9827$

The lowest possible value of 39 - a for which the null hypothesis is rejected is is 20, so the highest possible value of a is 19.

For upper tail, need the lowest possible value of b for which $P(X \ge b) < 0.025$. $P(X \ge b) < 0.025 \implies P(Y \le 40 - b) < 0.025$

For B(40, 0.35), $P(Y \le 7) = 0.0124$ $P(Y \le 8) = 0.0303$

The highest possible value of 40 - b is \mathcal{F} , so the lowest possible value of b is 33.

The crítical region is $X \le 19$ and $X \ge 33$.

The observed value of X = 19 lies in the critical region, so reject H₀. The evidence suggests that there has been a change in the germination rate.

6. Let p be the probability that a student does no fitness training or sporting activity out of school.

Ho : p = 0.7 H1 : p < 0.7

Significance level = 1%

Let X be the number of students who do no fitness training or sporting activity out of school, so $X \sim B(10, 0.7)$ Let Y be the number of students who do fitness training or sporting activity out of school, so $Y \sim B(10, 0.3)$.

Need the highest possible value of a for which $P(X \le a) < 0.1$

© MEI, 16/01/12

$$P(X \le a) < 0.1 \Rightarrow P(\gamma \ge 10 - a) < 0.1$$
$$\Rightarrow 1 - P(\gamma \le 9 - a) < 0.1$$
$$\Rightarrow P(\gamma \le 9 - a) > 0.9$$

For B(10, 0.3), $P(\gamma \le 4) = 0.8497$ $P(\gamma \le 5) = 0.9527$

The lowest possible value of g - a is 5, so the highest possible value of a is 4. The critical region is $X \le 4$.

The observed value of X = 5 does not lie in the critical region, so accept H_o. There is not sufficient evidence to support the criticism by the sporting groups.

 \mathcal{F} . Let λ be the mean number of colds per year.

$$H_0: \lambda = 4$$
$$H_1: \lambda > 4$$

Significance level = 5%

Let X be the colds in the first year in the new job. For $X \sim Po(4)$, $P(X \ge 7) = 1 - P(X \le 6)$

Accept Ho. There is not sufficient evidence to suggest that the mean number of colds per year has increased.

8. (i) Let p be the probability that a casualty has to wait more than 30 minutes

 $H_0: p = 0.3$ $H_1: p < 0.3$

Let X be the number of patients who had to wait more than 30 minutes. Using $X \sim B(20, 0.3)$ $P(X \le 2) = 0.0355$

At the 5% significance level: $P(X \le 2) < 0.05$, so reject Ho. There is evidence to suggest that the proportion of patients waiting more than 30 minutes has decreased.

At the 2% significance level:
P(X ≤ 2) > 0.02, so accept Ho. There is not sufficient evidence to suggest that the proportion of patients waiting more than 30 minutes has decreased.

© MEI, 16/01/12

(iii) At the 5% level, need to find highest value of r such that $P(X \le r) < 0.05$ From tables, $P(X \le 2) = 0.0355$ $P(X \le 3) = 0.1071$ The highest value of r is 2 The critical region is $X \le 2$.

9. (i) Let p be the probability that a student gets a grade A - C.

 $H_0: p = 0.6$ $H_1: p \neq 0.6$

Significance level = 5%

16 out of 20 is in the upper tail. Let X be the number of students who got grades A - C, so $X \sim B(20, 0.6)$ Let Y be the number of students who didn't get A - C, so $Y \sim B(20, 0.4)$ $P(X \ge 16) = P(Y \le 4)$ = 0.0510

At the 5% significance level for a two-tailed test: $P(X \ge 16) > 0.025$, so accept H₀. There is not sufficient evidence to suggest that the proportion of students getting grades A - C is different.

(ii) Let p be the probability that a student gets a grade A - C.

 $H_0: p = 0.6$ $H_1: p > 0.6$

Significance level = 5%

At the 5% significance level for a one-tailed test: $P(X \ge 16) = 0.0510 > 0.05$, so accept H₀. There is not sufficient evidence to suggest that the proportion of students getting grades A – C has increased.