
Kinematics of a particle

Section 1: Projectiles

Solutions to Exercise

- (ii) $u_x = 25 \cos 30^\circ = 12.5 \sqrt{3}$ $u_y = 25 \sin 30^\circ = 12.5$
- (iii) $v_x = 12.5\sqrt{3}$ (horizontal speed is constant) $v_y = u_y - gt$ = 12.5 - 9.8t

$$(iv) \quad x = u_x t$$
$$= 12.5\sqrt{3}t$$
$$y = u_y t - \frac{1}{2}gt^2$$
$$= 12.5t - 4.9t^2$$

2. (i) At maximum height
$$v_y = 0$$

Vertically: $v_y^2 = u_y^2 - 2gh$
 $0 = 12.5^2 - 2 \times 9.8h$
 $h = \frac{12.5^2}{19.6} = 7.97$
Greatest height reached = 7.97 m.

(ii) The particle hits the ground when y = 0: Vertically: $y = 12.5t - 4.9t^2$ 0 = t(12.5 - 4.9t) $t = 0 \text{ or } t = \frac{12.5}{4.9}$

Time taken = 2.55 seconds.

(iii) Range = horizontal distance covered during time of flight

Horízontally:
$$x = 12.5\sqrt{3t}$$

= $12.5\sqrt{3} \times \frac{12.5}{4.9}$
= 55.2
Horízontal range = 55.2 m.

3. (i) Horizontally:
$$v_x = 50\cos 30^\circ = 25\sqrt{3}$$

Vertically: $v_y = u + at$
 $= 50\sin 30^\circ - 9.8 \times 2$
 $= 5.4$
5.4
 5.4
Speed = $\sqrt{(25\sqrt{3})^2 + 5.4^2} = 43.6 \text{ ms}^{-1}$ (3 s.f.)
 $\tan \theta = \frac{5.4}{25\sqrt{3}}$
 $\theta = 7.1^\circ$
The velocity is 43.6 ms^{-1} at an angle of 7.1° above the horizontal.

(ii) At greatest height,
$$v_y = 0$$

Vertically: $0 = 50 \sin 30^\circ - 9.8t$
 $t = \frac{25}{25}$

$$t = \frac{100}{9.8}$$

The time taken to reach the greatest height is 2.55 seconds (3 s.f.)

(iii) Vertically:
$$y = 50t \sin 30^{\circ} - \frac{1}{2}gt^{2}$$

= $25 \times \frac{25}{9.8} - \frac{9.8}{2} \left(\frac{25}{9.8}\right)^{2}$
= 31.9

The greatest height reached = 31.9 m (3 s.f.)

4. (i) Vertically:
$$s = -50$$

 $g = -9.8$
 $u = 0$
 $t = ?$
 $t = 3.19$
5. $s = ut + \frac{1}{2}at^{2}$
 $-50 = 0 + \frac{1}{2} \times -9.8t^{2}$
 $t^{2} = \frac{50}{4.9}$
 $t = 3.19$

The time in the air is 3.19 seconds (3 s.f.)

© MEI, 27/06/07

(ii) Horizontally: x = ut $65 = u \sqrt{\frac{50}{4.9}}$ u = 20.3The initial speed is 20.3 ms⁻¹. 5. Vertically: s = -19.6 $s = ut + \frac{1}{2}at^2$ $g = -9.8 \qquad -19.6 = 0 + \frac{1}{2} \times -9.8t^2$ u = 0 $t^{2} = 4$ t = ?t = 2 It hits the ground after 2 seconds. Horízontally: x = ut=24.5×2 = 49 Range = 49 m. When the ball hits ground: Horízontally: $V_x = 24.5$ Vertically: $v_{\mu} = 0 - 9.8 \times 2$ V_H = -19.6 24.5 $\overline{}$

Speed =
$$\sqrt{24.5^2 + 19.6^2} = 31.4 \text{ ms}^{-1}$$
 (3 s.f.).
tan $\theta = \frac{19.6}{24.5}$
 $\theta = 38.7^\circ$

The velocity is 31.4 ms^{-2} at an angle 38.7 below the horizontal.

6. (i)

$$\frac{\sqrt{5}}{2}$$

$$\frac{\theta}{1}$$
Horizontally:

$$u_x = 45 \cos \theta = 45 \times \frac{1}{\sqrt{5}} = 9\sqrt{5} \text{ ms}^{-1}$$

© MEI, 27/06/07

vertically:

$$u_{g} = 45 \sin \theta = 45 \times \frac{2}{\sqrt{5}} = 18\sqrt{5} \text{ ms}^{-1}$$

(ii) Horizontally: $v_x = 9\sqrt{5}$ since horizontal velocity is constant Vertically: $v_y = u_y + at$ $= 18\sqrt{5} - 9.8t$

(iii) Horizontally:
$$x = u_x t = 9\sqrt{5t}$$

Vertically: $y = u_y t - \frac{1}{2}gt^2$
 $= 18\sqrt{5t} - 4.9t^2$

(iv) Time of flight is the time at which y = 0Vertically: $0 = 18\sqrt{5t} - 4.9t^2$

$$0 = t(18\sqrt{5} - 4.9t)$$

$$t = 0 \text{ or } t = \frac{18\sqrt{5}}{4.9}$$

Time of flight = 8.21 seconds (3 s.f.)

Horízontally: $x = 9\sqrt{5t}$

$$x = 9\sqrt{5} \times \frac{18\sqrt{5}}{4.9} = 165$$

The range is 165 m (3 s.f.)

(v) At greatest height,
$$v_y = 0$$

Vertically: $v_y^2 = u_y^2 - 2gh$
 $0 = (18\sqrt{5})^2 - 2 \times 9.8h$
 $h = \frac{1620}{19.6} = 82.7$

$$\overline{\mathcal{F}}$$
. (i) 5 4 t

$$\tan \alpha = \frac{4}{3}$$
 sin $\alpha = \frac{4}{5}$ cos $\alpha = \frac{3}{5}$

Horizontally: $u_x = 30 \cos \alpha = 30 \times \frac{3}{5} = 18$ Vertically: $u_y = 30 \sin \alpha = 30 \times \frac{4}{5} = 24$

(ii) At maximum height,
$$v_y = 0$$

Vertically: $v_y = u_y + at$

releasing:
$$v_y = u_y + at$$

 $0 = 24 - 9.8t$
 $t = \frac{24}{9.8}$

Time taken to reach highest point = 2.45 seconds (3 s.f.)

Vertically:
$$v_y^2 = u_y^2 - 2gh$$

 $0 = 24^2 - 2 \times 9.8h$
 $h = \frac{576}{19.6} = 29.4$

Maximum height = 29.4 m (3 s.f.).

(iii) Time of flight is twice the time taken to reach highest point Time of flight = $\frac{48}{9.8}$ = 4.90 seconds (3 s.f.)

Horizontally: $x = 18t = 18 \times \frac{48}{9.8} = 88.2$ The range is 88.2 m (3 s.f.)

8. Horizontally: x = 20tWhen ball reaches net, x = 12, so $12 = 20t \implies t = 0.6$ Vertically when ball reaches net: $y = 0 - \frac{1}{2}gt^2 = -4.9 \times 0.6^2 = -1.764$ The ball has dropped by 1.764 m, so its height is 2.8 - 1.764 = 1.036The net is 1 m high, so the ball clears the net by 3.6 cm.