Find the coefficient of the x⁵ term in the expansion of $\left(3 + \frac{1}{3}x\right)^9$

Prove that $(\cos x - \sin x)^2 + (\sin x + \cos x)^2 = 2$

The graph of $y = x^2 - \frac{1}{3}x^3 + ax$ passes through (3,24). Find the x- coordinates of the stationary points

 $\mathbf{a} = 4\mathbf{i} - \mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 2\mathbf{j}$. Find $|2\mathbf{b} - \mathbf{a}|$

The graph of $y = x^3$ is translated by vector $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ find the equation of the resulting graph in the form $y = x^3 + ax^2 + bx + c$

WEEK 1

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Find the coefficient of the x⁴ term in the expansion of $(x - 1)(1 + 2x)^7$

Show that $1 - \frac{\sin\theta\cos\theta}{\tan\theta} = \sin^2\theta$

If y = x(4 - x) calculate the finite area enclosed by the curve and the x - axis

If $q = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ find the vector parallel to q with magnitude 25

The graph of $y = x^2 - 2x$ is stretched by scale factor ½ parallel to the x-axis. Find the equation of the resulting graph

Find the coefficient of the x⁵ term in the expansion of $\left(\frac{1}{3} - 3x\right)^{10}$ QUESTION 1 Show that $\frac{tan\theta sin\theta}{1+cos\theta} = \frac{1-cos\theta}{cos\theta}$ **QUESTION 2** If $y = x^3 - 5x^2 + kx$ has a stationary point where x = 2, find the y coordinate of this **QUESTION 3** stationary point Express **p** in the from ai + bj **QUESTION 4** 5 ์30° The graph of $y = x^3 + 2x^2 - x + 3$ is reflected in the y-axis. **QUESTION 5** Find the equation of the resulting graph

WEEK 3

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Find the coefficient of the x⁴ term in the expansion of $(x^2 - 1)(2 - 3x)^5$

Show that $tan\theta + \frac{1}{tan\theta} = \frac{1}{sin\theta cos\theta}$

Sketch the graph of y = x(x - 1)(x - 3). Calculate the total area bounded by the graph of y and the x axis between x = 0 and x = 3

If $\overrightarrow{OX} = 4i - 8j$ and $\overrightarrow{OY} = -4i + 5j$ calculate $|\overrightarrow{XY}|$

The point (-1,2) lies on the graph of y = f(x). State the coordinates of its image when the graph is transformed to y = 2f(x)

Find the coefficient of the x⁶ term in the expansion of $\left(\frac{1}{2} + 2x\right)^{12}$

Solve $\frac{4\cos\theta - 1}{\tan\theta} = 2\sin\theta$ $0^{\circ} < \theta < 360^{\circ}$

Find the equation of the normal to the curve $y = 8x^4 - 3$ at the point where $x = -\frac{1}{2}$

ai + bj is a vector of magnitude $\sqrt{3}$ in the direction parallel to 3i – 3j Find the exact values of and b.

The point (6,-10) lies on the graph of y = f(x). State the coordinates of its image when the graph is transformed to y = f(2x)

Find the coefficient of the x⁵ term in the expansion of $(x^2 - 2)(2 - 2x)^6$

Solve $5sin\theta = 1 + 2cos^2\theta$ $0^{\circ} < \theta < 360^{\circ}$

Evaluate $\int_{-3}^{0} (2x+3)^2 dx$

The position vector of A is 6i + 8j. The position of the midpoint of the line joining A and B is 3i + 2j. Find $|\overrightarrow{AB}|$

The point (-1,4) lies on the graph of y = f(x). State the coordinates of its image when the graph is transformed to y = f(x-1) + 3

Find the coefficient of the x⁵ term in the expansion of $\left(3 - \frac{1}{3}x\right)^{11}$

Solve $sin(3x - 60^{\circ}) = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$

Find the equation of the tangent to the curve $y = x^2 \sqrt{x}$ at the point where x = 4

O, A and B are vertices of a triangle. If $\overrightarrow{OA} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$ calculate the area of the triangle

The point (-5,-2) lies on the graph of y = f(x). State the coordinates of its image when the graph is transformed to y = f(x+5) + 2