QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Calculate the finite area enclosed by the graph of y = x(x - 4) and the x- axis

Prove that $(\cos x - \sin x)^2 + (\sin x + \cos x)^2 = 2$

Express $2\log x + 0.5\log y - 3\log z$ as a single logarithm

The graph of $y = x^2 - \frac{1}{3}x^3 + ax$ passes through (3,24). Find the x- coordinates of the stationary points

Find the coefficient of the x⁵ term in the expansion of $\left(3 + \frac{1}{3}x\right)^9$

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Calculate the finite are enclosed by the graph of $y = 16 + 6x - x^2$ and the x-axis

Solve $cos^2\theta - sin^2\theta = -0.5$ for $0^\circ < \theta < 360^\circ$

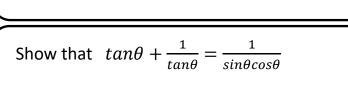
Simplify 2 ln e^{-x} + ln e^{x} – ½ln e^{4x}

Given that $y = x^3 - 5x^2 + kx$ has a stationary point where x = 2, find the value of the y coordinate at the stationary point

Find the coefficient of the x⁴ term in the expansion of $(x - 1)(1 + 2x)^7$

Sketch the graph of y = x(x - 1)(x - 3). Calculate the total area bounded by the graph of y and the x axis between x = 0 and x = 3

Solve $3tan\theta sin\theta = cos\theta$ for $0^{\circ} < \theta < 360^{\circ}$


Solve $\ln x = \ln (x + 4) - \ln(x + 1)$

Given that $y = 2\sqrt{x} - ax + 10$ passes through the point (1,6) find the x-coordinate of the stationary point

Find the coefficient of the x⁵ term in the expansion of $\left(\frac{1}{3} - 3x\right)^{10}$

Find $\int_{4}^{9} 3x + 4\sqrt{x} + 2 \, dx$

QUESTION 1 **QUESTION 2 QUESTION 3 QUESTION 4 QUESTION 5**

Solve $3^{3x-1} = \frac{1}{2}$ giving your answer correct to 3 significant figures

Find the equation of the normal to the curve $y = 8x^4 - 3$ at the point where $x = -\frac{1}{2}$

Find the coefficient of the x⁴ term in the expansion of $(x^2 - 1)(2 - 3x)^5$

Find $\int_1^9 1 + 2x + \sqrt{x} \, dx$

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Solve $\frac{4\cos\theta - 1}{\tan\theta} = 2\sin\theta$ $0^{\circ} < \theta < 360^{\circ}$

Express $\log_a 1 + \frac{1}{2} \log_a 36 + 3 \log_a 4 - 2 \log_a 2$ as a single logarithm

Find the equation of the normal to the curve y = $10\sqrt{x} - 10$ at the point where x = 4

Find the coefficient of the x⁶ term in the expansion of $\left(\frac{1}{2} + 2x\right)^{12}$

Evaluate $\int_{-3}^{0} (2x+3)^2 dx$

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Solve $5sin\theta = 1 + 2cos^2\theta$ $0^{\circ} < \theta < 360^{\circ}$

Solve $4e^{2x} = 9$ expressing your answer in the form ln p where p is a rational number

Find the equation of the tangent to the curve $y = x^2 \sqrt{x}$ at the point where x = 4

Find the coefficient of the x⁵ term in the expansion of $(x^2 - 2)(2 - 2x)^6$

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Calculate the area enclosed by the parabolas $y = 10x - 2x^2$ and $y = 5x - x^2$

Solve $sin(3x - 60^{\circ}) = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$

R = 600 $e^{-0.5t}$ Find the value of t when R = 180 giving your answer to 3 significant figures.

Find the x coordinates of the stationary points of the curve $y = x^5 - 60x^3$

Find the coefficient of the x⁵ term in the expansion of $\left(3 - \frac{1}{3}x\right)^{11}$