QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

A circle with equation $x^2 + y^2 - 6y - 4x = 12$ crosses the positive x-axis at point C. Find the equation of the tangent to the circle at C

Differentiate with respect to x $\frac{8x^2-1}{2\sqrt{x}}$

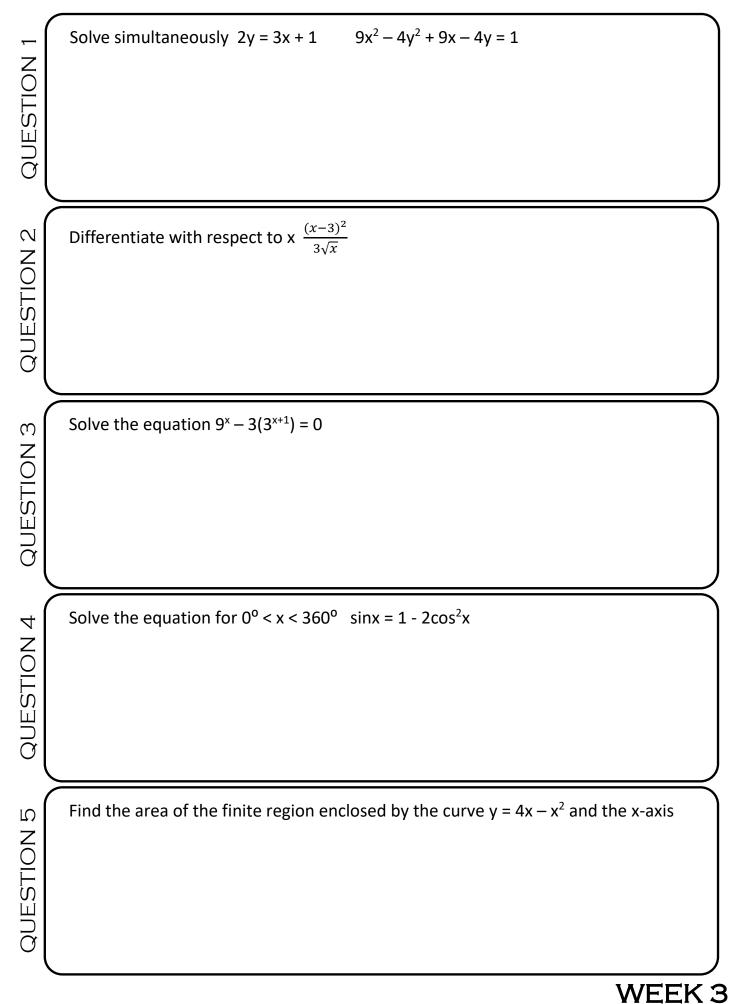
Express $x^2 + 6x + 16$ in the form $(x + a)^2 + b$. State the greatest possible value of $\frac{1}{x^2+6x+16}$

A, B and C are the vertices of a triangle with coordinates (-4, 4) (2, 6) and (6, -6). Calculate the area of triangle ABC

Find the coefficient of the x^3 term in the expansion of $(2 - 3x^3)(2 + 3x)^4$

Given that the equation $4x^2 - kx + k - 3 = 0$, where k is a constant, has real roots find the range of values of k

Given that $\cos \theta = \sqrt{2} - 1$ find the value of $\sin^2 \theta$ in the form a + b $\sqrt{2}$


A curve has equation $y = x + \frac{4}{x}$. Point A on the curve has an x coordinate of 1. Find the x- coordinate of the point at which the normal to the curve at point A intersects the x- axis.

Solve for n

 $2\log_a(n) - \log_a(3-n) = \log_a(4)$

Describe the transformation that maps the graph of y = 2^x on to $y = \left(\frac{1}{2}\right)^x$

WEEK 2

Point C (2,4) lies on a circle $x^2 + y^2 - 8x - 6y + 20 = 0$. Find the equation of the tangent to the circle at C

Find the first 3 terms in the expansion of $(2 - 3x)^8$

Given that (x+3) is a factor of $f(x) = x^3 + 6x^2 + 5x - 12$ factorise f(x) and sketch the graph of y = f(x)

 $\overrightarrow{OA} = -2i + 3j$ $\overrightarrow{OB} = 4i + 6j$ Calculate $|\overrightarrow{AB}|$

20 g of a substance is dropped into a solution. The mass not dissolved after t seconds is modelled by $M = Ae^{-kt}$. After 5 seconds 10g remains. Find the value of A and k (3 s.f.)

 $\left(\frac{1}{8}\right)^{2x} = 16^{3x-1}$ Solve the equation QUESTION 1 Calculate the area enclosed by the line y = 10 the curve **QUESTION 2** $y = x^2 + 1$ Solve $\tan 2\theta = -1$ for $0^\circ \le x < 360^\circ$ **QUESTION 3** Find the equation of the normal to the curve $y = \frac{(x+2)^2}{x}$ at the point where x = 1 **QUESTION 4** Find the coefficient of the term x^4 in the expansion of $(x - 4)(1 + 2x)^7$ **QUESTION 5**

WEEK 5

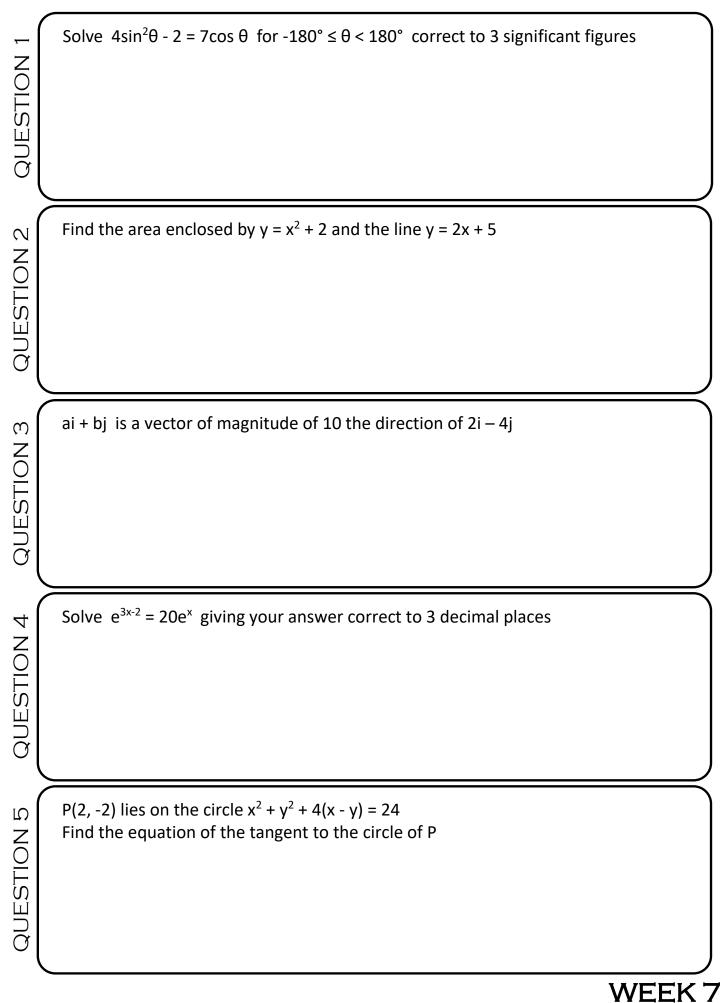
QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5


If $\sin \theta = \frac{5}{13}$ and θ is acute, find the value of $\cos \theta$

Solve for n $\log_4(n+6) + \log_4(n) = 2$

Simplify $\frac{3+\sqrt{2}}{\sqrt{2}+1} - \frac{1}{1-\sqrt{2}}$

Find the coordinates of the local minimum point of $y = x^3 + 3x^2 + 72$

If $\frac{dy}{dx} = 3 + \frac{12}{x^4}$ and the curve y = f(x) passes through the point (1,1), find f(x)

