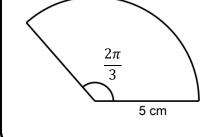
Calculate

 $\sum_{n=1}^{n=10} 3n+2$ 

QUESTION 1 **QUESTION 2 QUESTION 3** 

**QUESTION 4** 


QUESTION 5

Find the first four terms in ascending powers of x in the binomial expansion of  $(1+2x)^{-2}$  for  $|x| < \frac{1}{2}$ Find the exact solutions of  $sin^2\theta = \frac{3}{4}$  for  $\theta \in [-2\pi, 2\pi]$ Solve cos2x - 3cosx = 4 for  $x \in [-2\pi, 2\pi]$ Evaluate  $\int_{-1}^{3} 3x^2 - 6x + 7 \, dx$ 

The first four terms of a geometric sequence are 12, 2.4, 0.48, 0.096 Write down a simplified expression for the sum of the first n terms

Find the first four terms in ascending powers of x in the binomial expansion of  $(1 - 4x)^{\frac{1}{2}}$  for  $|x| < \frac{1}{4}$ 

Calculate the perimeter of the sector



Write 2sinx - 5cosx in the form  $Rsin(x - \theta)$  R > 0  $\theta \in \left[0, \frac{\pi}{2}\right]$ 

 $y = 2x^2\sqrt{x} + 3x^2$  Given than  $2\frac{d^2y}{dx^2} + a\sqrt{x} = 12$  find the value of a

The 10<sup>th</sup> term of an arithmetic sequence is 104 and the 14<sup>th</sup> term is 152. Which term has a value of 368?

Find the first four terms in ascending powers of x in the binomial expansion of  $\frac{2}{1-2x}$  for  $|x| < \frac{1}{2}$ 

Find all solutions to  $4sin\theta = \frac{2}{tan\theta}$  for  $0 < \theta < 2\pi$ 

Express  $3\cos x - 7\sin x$  in the form  $R\cos(x + \theta)$  R > 0  $\theta \in \left[0, \frac{\pi}{2}\right]$ 

Evaluate  $\int_{1}^{3} (2x-1)^2 dx$ 

A sequence is defined by  $u_{n+1} = ku_n + 3$   $u_1 = 2$ The limit of the sequence as  $n \rightarrow \infty$  is 5. Find the value of k

Find the first four terms in ascending powers of x in the binomial expansion of  $\frac{(x+1)}{2-x}$  for |x| < 2

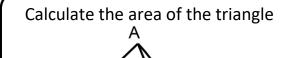
Solve  $8sin^2 2\theta cos 2\theta = tan^2 2\theta$  for  $0 < \theta < \pi$ 

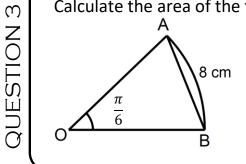
Prove that  $\frac{cosec\theta}{cosec\theta - sin\theta} = sec^2\theta$ 

Given that  $y = 4x^2 + \frac{5-x}{x}$  find the equation of the normal to the curve at the point where x = -1

**QUESTION 5** 

QUESTION 1


**QUESTION 2** 

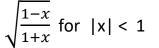

**QUESTION 4** 

**QUESTION 5** 

The 2<sup>nd</sup> and 4<sup>th</sup> terms of a geometric sequence are 10 and 62.5 respectively. Find the sum of the first 5 terms

Find the first four terms in ascending powers of x in the binomial expansion of  $\frac{1}{3x+1} + \frac{3}{3+x}$  for  $|\mathbf{x}| < \frac{1}{3}$ 





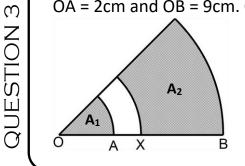

Solve  $5\sin 4\theta = 3\sin 2\theta$   $0 < \theta < \pi$ 

Find the coordinates of the (local) maximum point of the curve  $y = \frac{48}{x} + x^3$ 

The sum of the first n terms of an arithmetic sequence is  $S_n$  =  $2n^2$  + 23n Find the nth term  $u_n$ 

Find the first three terms in ascending powers of x in the binomial expansion of




QUESTION 1

**QUESTION 2** 

**QUESTION 4** 

**QUESTION 5** 

OA = 2cm and OB = 9cm. Given that area  $A_2 = 5A_1$  calculate OX




Prove that 
$$\frac{1-tan^2\theta}{1+tan^2\theta} = 1 - 2sin^2\theta$$

Calculate the area enclosed by the curve  $y = x^2 - 4x + 4$  and the line y = 9

How many terms are needed for the sum of the geometric sequence 2, 6, 18, 54 to exceed 200000?

Find the first three terms in ascending powers of x in the binomial expansion of



Find the perimeter of a segment cut off by a chord of length 12 cm from a circle of radius 10 cm, correct to 3 significant figures

Solve  $2cot^2\theta + cosec\theta + 1 = 0$   $-2\pi < \theta < 2\pi$ 

The curve with gradient given by  $\frac{dy}{dx} = 4 - \frac{10}{x^2}$  passes through point (5, 16) Find y in terms of x