SKILLS CHECK

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

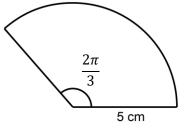
QUESTION 5

Calculate

$$\sum_{n=1}^{n=10} 3n + 2$$

Find the first four terms in ascending powers of x in the binomial expansion of $(1+2x)^{-2}$ for $|x|<\frac{\pi}{2}$

Find the exact solutions of $sin^2\theta=\frac{3}{4}$ for $\theta\in[-2\pi,2\pi]$


Express $\frac{2}{(x+3)(x+1)}$ in the form $\frac{A}{x+3} + \frac{B}{x+1}$

Evaluate $\int_{-1}^{3} 3x^2 - 6x + 7 \ dx$

The first four terms of a geometric sequence are 12, 2.4, 0.48, 0.096 Write down a simplified expression for the sum of the first n terms

Find the first four terms in ascending powers of x in the binomial expansion of $(1-4x)^{\frac{1}{2}}$ for $|x|<\frac{\pi}{4}$

Calculate the perimeter of the sector

Express $\frac{x+2}{(x-1)(x-4)}$ in the form $\frac{A}{x-1} + \frac{B}{x-4}$

 $y = 2x^2\sqrt{x} + 3x^2$ Given than $2\frac{d^2y}{dx^2} + a\sqrt{x} = 12$ find the value of a

SKILLS CHECK

QUESTION 1

QUESTION 2

QUESTION 3

The 10th term of an arithmetic sequence is 104 and the 14th term is 152. Which term has a value of 368?

Find the first four terms in ascending powers of x in the binomial expansion of $\frac{2}{1-2x}$ for $|x| < \frac{1}{2}$

Find all solutions to $4sin\theta = \frac{2}{tan\theta}$ for $0 < \theta < 2\pi$

Express $\frac{16}{(x+1)(x-3)^2}$ in the form $\frac{A}{x+1} - \frac{B}{x-3} + \frac{C}{(x-3)^2}$

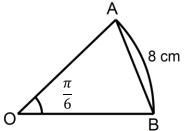
Evaluate $\int_1^3 (2x-1)^2 dx$

A sequence is defined by $u_{n+1} = ku_n + 3$ $u_1 = 2$ The limit of the sequence as $n \rightarrow \infty$ is 5. Find the value of k

Find the first four terms in ascending powers of x in the binomial expansion of $\frac{(x+1)}{2-x}$ for |x| < 2

Solve $8sin^2 2\theta cos 2\theta = tan^2 2\theta$ for $0 < \theta < \pi$

Express $\frac{3x-1}{(1-2x)^2}$ in the form $\frac{A}{1-2x} + \frac{C}{(1-2x)^2}$


Given that $y = 4x^2 + \frac{5-x}{x}$ find the equation of the normal to the curve at the point where x = 1

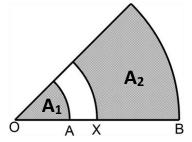
The 2nd and 4th terms of a geometric sequence are 10 and 62.5 respectively. Find the sum of the first 5 terms

Find the first four terms in ascending powers of x in the binomial expansion of $\frac{1}{x}$, $\frac{3}{x}$, $\frac{1}{x}$, $\frac{1}{x}$

$$\frac{1}{3x+1} + \frac{3}{3+x}$$
 for $|x| < \frac{1}{3}$

Calculate the area of the triangle

Express
$$\frac{3x^2+10x-4}{(x-1)(x+2)}$$
 in the form $\frac{Ax}{x-1} + \frac{B}{x+2}$


Find the coordinates of the (local) maximum point of the curve $y = \frac{48}{x} + x^3$

The sum of the first n terms of an arithmetic sequence is $S_n = 2n^2 + 23n$ Find the nth term u_n

Find the first three terms in ascending powers of x in the binomial expansion of

$$\sqrt{\frac{1-x}{1+x}} \text{ for } |x| < 1$$

OA = 2cm and OB = 9cm. Given that area $A_2 = 5A_1$ calculate OX

Express
$$\frac{6x^3-x+6}{2x^2-1}$$
 in the form $Ax + \frac{Bx+C}{2x^2-1}$

Calculate the area enclosed by the curve $y = x^2 - 4x + 4$ and the line y = 9

How many terms are needed for the sum of the geometric sequence 2, 6, 18, 54 to exceed 200000?

Find the first three terms in ascending powers of x in the binomial expansion of

$$\sqrt{\frac{4+x}{1-x}} \quad \text{for } |x| < 1$$

Find the perimeter of a segment cut off by a chord of length 12 cm from a circle of radius 10 cm, correct to 3 significant figures

Express
$$\frac{x}{(1+x)(1-2x)}$$
 in the form $\frac{A}{1+x} + \frac{B}{1-2x}$

The curve with gradient given by $\frac{dy}{dx} = 4 - \frac{10}{x^2}$ passes through point (5, 16) Find y in terms of x