SKILLS CHECK

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Differentiate $y = (4x^2 - x^3)^4$ with respect to x

Find the equation of the perpendicular bisector of (1, -4) and (-5, 4)

 $f(x) = \frac{x+2}{x-2}$. Find $f^{-1}(x)$ and state the range of $f^{-1}(x)$

Express $\frac{2}{(x+3)(x+1)}$ in the form $\frac{A}{x+3} + \frac{B}{x+1}$

A curve passes through (3,18) and is such that $\frac{dy}{dx} = \frac{1}{3}x^2 - 4x + 1$ Find y in terms of x

Find $\frac{dy}{dx}$ when $y = \ln (2x - 2x^3)$

The line x + y = k where k is a constant is a tangent to the circle $x^2 + y^2 = 2x$. Find the possible values of k (leave your answers in surd form)

Express $4x^2 + 6x - 3$ in the form $a(x + b)^2 + c$ State the range of the function $f(x) = 4x^2 + 6x - 3$

Express $\frac{x+2}{(x-1)(x-4)}$ in the form $\frac{A}{x-1} + \frac{B}{x-4}$

Find the finite area bounded by the curve $y = 16 - 4x^2$ and the x-axis

Differentiate $\sqrt{2x^3 - 2x}$ with respect to x

A circle has equation $x^2 + y^2 - 4y - 14 = 0$. A chord of the circle has length 8. Find the perpendicular distance from the chord to the centre of the circle.

Given that $f(x) = x^2 + 1$ and g(x) = 3x, solve the equation fg(x) = gf(x)

Express $\frac{16}{(x+1)(x-3)^2}$ in the form $\frac{A}{x+1} - \frac{B}{x-3} + \frac{C}{(x-3)^2}$

Evaluate $\int_2^4 1 + \frac{4}{x^3} dx$

Find $\frac{dy}{dx}$ when $y = (2e^{2x} - 1)^3$

Find the equation of the tangent to the circle $(x + 1)^2 + (y - 3)^2 = 13$ at the point (2, 5)

The function $f(x) = 16 - 6x - x^2$ $x \in \mathbb{R}$ Find the range of f(x)

Express $\frac{3x-1}{(1-2x)^2}$ in the form $\frac{A}{1-2x} + \frac{C}{(1-2x)^2}$

Find the value of the constant c given that

$$\int_0^4 c\sqrt{x} \ dx = 64$$

SKILLS CHECK

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Find $\frac{dy}{dx}$ when $y = \cos^3 x$

The line with equation y = x + c is a tangent to the circle $x^2 + y^2 - 8x + 6y + 17 = 0$ Find the 2 possible values of c

 $f(x) = \frac{ax+b}{x-b} \quad x \neq b$ Find $f^{-1}(x)$

Express $\frac{3x^2+10x-4}{(x-1)(x+2)}$ in the form $\frac{Ax}{x-1} + \frac{B}{x+2}$

Evaluate $\int_{1}^{2} \left(\frac{8}{x^3} + x^3 \right) dx$

SKILLS CHECK

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

QUESTION 5

Differentiate $y = (\ln x + 4)^{-3}$ with respect to x

The curve C has equation $y = x^2(x - 1)$

The points A and B lie on the curve and have x coordinates -1 and 2 respectively. Find the length of the line AB

$$f(x) = 2e^{3x} + 1$$

State the range and domain of $f^{-1}(x)$

Express
$$\frac{6x^3-x+6}{2x^2-1}$$
 in the form $Ax + \frac{Bx+C}{2x^2-1}$

Find the region enclosed by the curve $y = x^4 + 5$ and the line y = 8

Find $\frac{dy}{dx}$ when $y = \ln(2 - \sin 2x)$

The straight line l_1 has gradient $\frac{1}{3}$ and passes through (6,5) The straight line l_2 is given by 4x + py - 6 = 0 intersects l_1 at (q, 2). Find the value of p and q

Solve gf(x) = 0 where $f(x) = \ln (3x - 1)$ and $g(x) = e^{2x} - 1$

Express $\frac{x}{(1+x)(1-2x)}$ in the form $\frac{A}{1+x} + \frac{B}{1-2x}$

A curve passes through (-1, 0) and is such that $\frac{dy}{dx}=4x^2-\frac{4}{x^3}$ Find y in terms of x