Differentiate $y = (4x^2 - x^3)^4$ with respect to x

Solve cos2x - 3cosx = 4 for $x \in [-2\pi, 2\pi]$

Find the equation of the tangent to the curve defined by x = 2t and $y = 3 + \sqrt{t}$ at the point where t = 1

 $f(x) = \frac{x+2}{x-2}$. Find $f^{-1}(x)$ and state the range of $f^{-1}(x)$

Find the equation of the perpendicular bisector of (1, -4) and (-5, 4)

Find $\frac{dy}{dx}$ when y = In $(2x - 2x^3)$

Write 2sinx - 5 cosx in the form $Rsin(x - \theta)$ R > 0 $\theta \in \left[0, \frac{\pi}{2}\right]$

Find the cartesian equation of the curve defined by

$$x = 1 - \frac{1}{t} \quad \text{and} \quad y = 1 + \frac{1}{t}$$

Express $4x^2 + 6x - 3$ in the form $a(x + b)^2 + c$ State the range of the function $f(x) = 4x^2 + 6x - 3$

The line x + y = k where k is a constant is a tangent to the circle $x^2 + y^2 = 2x$. Find the possible values of k (leave your answers in surd form)

Differentiate $\sqrt{2x^3 - 2x}$ with respect to x

Express $3\cos x - 7\sin x$ in the form $R\cos(x + \theta)$

$$R > 0 \quad \theta \in \left[0, \frac{\pi}{2}\right]$$

Find the equation of the normal to the curve defined by $x = t^2 + 2$ and y = t - 2 at the point where t = 4

Given that $f(x) = x^2 + 1$ and g(x) = 3x, solve the equation fg(x) = gf(x)

A circle has equation $x^2 + y^2 - 4y - 14 = 0$. A chord of the circle has length 8. Find the perpendicular distance from the chord to the centre of the circle.

Find $\frac{dy}{dx}$ when y = $(2e^{2x} - 1)^3$

Prove that
$$\frac{cosec\theta}{cosec\theta-sin\theta}=sec^2\theta$$

Find the coordinates of the point where the normal to the curve defined by $x = 3t^2$ and y = 6t at t = 2, crosses the curve again

The function $f(x) = 16 - 6x - x^2$ $x \in \mathbb{R}$

Find the range of f(x)

Find the equation of the tangent to the circle $(x + 1)^2 + (y - 3)^2 = 13$ at the point (2, 5)

Find $\frac{dy}{dx}$ when $y = \cos^3 x$

Solve $5\sin 4\theta = 3\sin 2\theta$ $0 < \theta < \pi$

Find the cartesian equation of the curve defined by $x = \sqrt{2}sint$ and y = 2cost

 $f(x) = \frac{ax+b}{x-b} \quad x \neq b$ Find $f^{-1}(x)$

The line with equation y = x + c is a tangent to the circle $x^2 + y^2 - 8x + 6y + 17 = 0$ Find the 2 possible values of x Differentiate $y = (\ln x + 4)^{-3}$ with respect to x

Prove that
$$\frac{1-tan^2\theta}{1+tan^2\theta} = 1 - 2sin^2\theta$$

Find $\frac{dy}{dx}$ for the curve defined by the parametric equations

$$x = \frac{1}{2t} \quad y = \frac{1}{2t+2}$$

$$f(x) = 2e^{3x} + 1$$

State the range and domain of $f^{-1}(x)$

The curve C has equation $y = x^2(x - 1)$ The points A and B lie on the curve and have x coordinates -1 and 2 respectively. Find the length of the line AB

Find $\frac{dy}{dx}$ when y = In(2 – sin 2x)

Solve $2cot^2\theta + cosec\theta + 1 = 0$ $-2\pi < \theta < 2\pi$

A curve is defined by the parametric equations $x = 2 - e^t$ and $y = 5 + e^{2t}$. Find the equation of the tangent to the curve where t = 0

Solve gf(x) = 0 where $f(x) = \ln (3x - 1)$ and $g(x) = e^{2x} - 1$

The straight line l_1 has gradient $\frac{1}{3}$ and passes through (6,5) The straight line l_2 is given by 4x + py - 6 = 0 intersects l_1 at (q, 2). Find the value of

The straight line l_2 is given by 4x + py - 6 = 0 intersects l_1 at (q, 2). Find the value of p and q