FORMULAE GIVEN AND TO LEARN - PURE

Торіс	GIVEN	LEARN
TOPIC 1 PROOF		

Торіс	GIVEN		LEARN
		Indices rules $a^{0}=1$ $a^{-m}=rac{1}{a^{m}}$ $x=rac{-b\pm\sqrt{b}}{2c}$	$\frac{b^2-4ac}{a}$
TOPIC 2: ALGEBRA & FUNCTIONS		$a^{m} \times a^{n} = a^{m+n}$ $a^{m} \div a^{n} = a^{m-n}$ $(a^{m})^{n} = a^{mn}$ $a^{m/n} = \sqrt[n]{a^{m}} = (\sqrt[n]{a})^{m}$ Discriminant $b^{2} - 4ac > 0$ two roots, real and unequal $b^{2} - 4ac = 0$ one root, real and equal $b^{2} - 4ac < 0$ hor roots, not real	S.No.Form of the rational functionForm of the partial fraction1. $\frac{px+q}{(x-a)(x-b)}, a \neq b$ $\frac{A}{x-a} + \frac{B}{x-b}$ 2. $\frac{px+q}{(x-a)^2}$ $\frac{A}{x-a} + \frac{B}{(x-a)^2}$ 3. $\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)}$ $\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$ 4. $\frac{px^2 + qx + r}{(x-a)^2(x-b)}$ $\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$ 5. $\frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)}$ $\frac{A}{x-a} + \frac{Bx + C}{x^2 + bx + c}$, where $x^2 + bx + c$ cannot be factorised furtherIf (x-p) is a factor of f(x) then f(p) =0

Торіс	GIVEN		LEARN
Topic TOPIC 3:	GIVEN	Slope formula General Form Slope Intercept Form Point Slope Form Midpoint Formula	LEARN $slope, m = \frac{change in y}{change in x} = \frac{rise}{run} = \frac{y_1 - y_1}{x_2 - x_1}$ Parallel lines have equal slopes. The slopes of perpendicular lines are opposite reciprocals of each other $\frac{Ax + By = C}{y = mx + b}$ where m is the slope and b is the y-intercept $(y - y_1) = m(x - x_1)$ where m is the slope $(x_1 + x_2, y_1 + y_2)$
COORDINATE GEOMETRY		Distance Formula $(x-a)^2 + K$	Equation of a circle $(y - b)^{2} = r^{2}$ Centre (a, b) radius = r how circle theorems from GCSE

Торіс	GIVEN	LEARN
TOPIC 4: SEQUENCES AND SERIES	Geometric series $S_{n} = \frac{a(1-r^{n})}{1-r}$ Arithmetic series $S_{n} = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$ $S_{\infty} = \frac{a}{1-r} \text{ for } r < 1$ Binomial series $(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \ldots + \binom{n}{r}a^{n-r}b^{r} + \ldots + b^{n} (n \in \mathbb{N})$ where $\binom{n}{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$ $(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \ldots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \ldots (x < 1, n \in \mathbb{R})$	nth Term of an Arithmetic Sequence Formula $a_n = a_1 + (n-1)d$ where <i>d</i> is the common difference Geometric Sequence A geometric sequence has a common ratio. The formula for the n th term is $a_n = ar^{n-1}$ where $a_n = n^{th}$ term of the sequence a = first term of the sequencer = common ratio

Торіс	GIVEN	LEARN
	Trigonometric identities	Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ Cosine rule $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$
	$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$	Area of a triangle = $\frac{1}{2}a b \sin C$
TOPIC 5: TRIGONOMETRY	$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} (A \pm B \neq (k + \frac{1}{2})\pi)$ Small angle approximations $\sin \theta \approx \theta$ $\cos \theta \approx 1 - \frac{\theta^2}{2}$ $\tan \theta \approx \theta$ where θ is measured in radians	Reciprocal Identities : $\sin \theta = \frac{1}{\csc \theta}$ $\csc \theta = \frac{1}{\sin \theta}$ $\cos \theta = \frac{1}{\sec \theta}$ $\sec \theta = \frac{1}{\cos \theta}$ $\tan \theta = \frac{1}{\cot \theta}$ $\cot \theta = \frac{1}{\tan \theta}$ Cofuntion Identities : $\sin \theta = \cos\left(\frac{\pi}{2} - \theta\right)$, $\cos \theta = \sin\left(\frac{\pi}{2} - \theta\right)$ $\sec \theta = \csc\left(\frac{\pi}{2} - \theta\right)$, $\csc \theta = \sec\left(\frac{\pi}{2} - \theta\right)$ $\sec \theta = \csc\left(\frac{\pi}{2} - \theta\right)$, $\csc \theta = \sec\left(\frac{\pi}{2} - \theta\right)$ $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$ Radians 180° = π radians Double angle formulae Area of sector $A = \frac{1}{2}r^2\theta$ Arc length $l = r\theta$ $= r\theta$ $= 2\cos^2 A - \sin^2 A$ $= 2\cos^2 A - 1$

Торіс	GIVEN	LEARN
		Chain rule $-\frac{dy}{dx} = \frac{du}{dx} \times \frac{dy}{du}$ Product rule $-\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$ $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$
	First Principles	Trigonometric Functions
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\cos x) = -\sin x$
		Exponential and Logarithmic Functions
TOPIC 7: DIFFERENTIATION	$f(x) f'(x)$ $\tan kx k \sec^{2} kx$ $\sec kx k \sec kx \tan kx$ $\cot kx -k \csc^{2} kx$ $\csc kx -k \csc^{2} kx$ $\csc kx -k \csc kx \cot kx$ $\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^{2}}$	Exponential and Edgarithmic functions $\frac{d}{dx}e^{x} = e^{x} \qquad \frac{d}{dx}\ln x = \frac{1}{x}$ $\frac{d}{dx}a^{x} = a^{x}\ln a \qquad \frac{d}{dx}(\log_{d} x) = \frac{1}{x\ln a}$ Parametric Equations If $x = f(t)$ and $y = g(t)$ are differentiable, then $y' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt}$ An increasing function has a $\frac{dy}{dx} > 0$ increasing $\frac{d^{2}y}{dx^{2}} > 0 \Rightarrow \text{minimum}$ A decreasing function has a $\frac{dy}{dx} < 0$ $\frac{dy}{dx} = 0$ $\frac{dy}{dx^{2}} = 0$ $\frac{d^{2}y}{dx^{2}} < 0 \Rightarrow \text{maximum}$

Торіс	GIVEN	LEARN
TOPIC 8: INTEGRATION	$f(x) \qquad \int f(x) dx$ $\sec^{2} kx \qquad \frac{1}{k} \tan kx$ $\tan kx \qquad \frac{1}{k} \ln \sec kx $ $\cot kx \qquad \frac{1}{k} \ln \sin kx $ $\csc kx \qquad -\frac{1}{k} \ln \csc kx + \cot kx , \qquad \frac{1}{k} \ln \tan(\frac{1}{2}kx) $ $\sec kx \qquad \frac{1}{k} \ln \sec kx + \tan kx , \qquad \frac{1}{k} \ln \tan(\frac{1}{2}kx + \frac{1}{4}\pi) $ $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	(1) (i) $\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$ (ii) $\int (ax + b)^n dx = \frac{1}{a} \cdot \frac{(ax + b)^{n+1}}{n+1} + c, n \neq -1$ (2) (i) $\int \frac{1}{x} dx = \log x + c$ (ii) $\int \frac{1}{ax + b} dx = \frac{1}{a} (\log ax + b) + c$ (3) $\int e^x dx = e^x + c$ (4) $\int a^x dx = \frac{a^x}{\log_x a} + c$ $\int f'(x)(f(x))^x dx = (f(x))^x + c$ (5) $\int \sin x dx = -\cos x + c$ $\int f'(x)e^{f(x)} dx = e^{f(x)} + c$ (6) $\int \cos x dx = \sin x + c$ $\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$ Helpful Trig. Things. $\cos^2 x = \frac{1}{2} (\cos 2x + 1) \sin^2 x = \frac{1}{2} (1 - \cos 2x)$ $\int \sin^n x \cos x dx = \frac{\sin^{n+1} x}{n+1} + c$ $\int \cos^n x \sin x dx = \frac{-\cos^{n+1} x}{n+1} + c$

Торіс	GIVEN	LEARN
TOPIC 9: NUMERICAL	The trapezium rule: $\int_{a}^{b} y dx \approx \frac{1}{2} h\{(y_{0} + y_{n}) + 2(y_{1} + y_{2} + \dots + y_{n-1})\}, \text{ where } h = \frac{b-a}{n}$	
METHODS	The Newton-Raphson iteration for solving $f(x) = 0$: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	

Торіс	GIVEN	LEARN
TOPIC 10: VECTORS		• If the vector $\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ makes an angle θ_x with the positive x -axis then $\cos \theta_x = \frac{x}{ \mathbf{a} }$ and similarly for the angles θ_y and θ_z • The distance from the origin to the point (x, y, z) is $\sqrt{x^2 + y^2 + z^2}$. • The distance between the points (x_1, y_1, z_1) and (x_2, y_2, z_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$ • To multiply a column vector by a scalar, multiply each component by the scalar: $\lambda {p \choose q} = {\lambda p \choose \lambda q}$ • To add two column vectors, add the x-components and the y-components: ${p \choose q} + {r \choose s} = {p + r \choose q + s}$
		• A unit vector in the direction of a is $\frac{a}{ a }$ • $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, where \overrightarrow{OA} and \overrightarrow{OB} are the position vectors of A and B respectively.

FORMULAE GIVEN AND TO LEARN - APPLIED

Торіс	GIVEN	LEARN
TOPIC 1: STATISTICAL SAMPLING		Stratified sample size = $\frac{group \ frequency}{total \ frequency} \times sample \ size$

Торіс	GIVEN	LEARN
		Standard deviation (with frequencies) = $\sqrt{\frac{\sum f x^2}{\sum f} - \bar{x}^2}$
	Standard deviation = $\sqrt{(Variance)}$	If code is $y=rac{x-a}{b}$, then $ar{x}=bar{y}+a$ and $\sigma_x=b\sigma_y$
TOPIC 2: DATA PRESENTAION AND INTERPRETATION	Interquartile range = $IQR = Q_3 - Q_1$	Linear interpolation – Use the boxes and the proportions within the boxes
	$S_{xx} = \Sigma (x_i - \overline{x})^2 = \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}$	Histograms - frequency density $\propto \frac{frequency}{class width}$
	Standard deviation = $\sqrt{\frac{\mathbf{S}_{xx}}{n}}$ or $\sqrt{\frac{\sum x^2}{n} - \overline{x}^2}$	Area ∝ frequency
		Outliers - outlier> $Q_3 + k(IQR)$ outlier < $Q_1 - k(IQR)$
		outlier > $\mu + 2\sigma$ outlier < $\mu - 2\sigma$ (you should be told this in the question, and which one to use)

Торіс	GIVEN		LEARN
	Probability	For independent events A and B ,	
TOPIC 3: PROBABILITY	$P(A') = 1 - P(A)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cap B) = P(A)P(B \mid A)$	$P(B \mid A) = P(B)$ $P(A \mid B) = P(A)$ $P(A \cap B) = P(A) P(B)$	

Торіс	GIVEN			LEARN			
	Distribution of X $P(X = x)$ Binomial $B(n, p)$ $\binom{n}{x} p^x (1-p)^n$			Mean np	Variance $np(1-p)$		Normal distribution - $Z = \frac{X-\mu}{\sigma}$
TOPIC 4: STATISTICAL DISTRIBUTIONS	The values z in t is, $P(Z > z) = 1$	he table are th $-\Phi(z) = p.$ z 0.0000	p 0.0500	om variable Z – N	N(0, 1) exceeds with p	robability <i>p</i> ; that	
	0.4000 0.3000 0.2000 0.1500 0.1000	0.2533 0.5244 0.8416 1.0364 1.2816	0.0250 0.0100 0.0050 0.0010 0.0005	1.9600 2.3263 2.5758 3.0902 3.2905			
	0.1000	1.2010	0.0005	0.2700			

Торіс	GIVEN	LEARN
TOPIC 5: STATISTICAL HYPOTHESIS TESTING	For a random sample of <i>n</i> observations from N(μ , σ^2) $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	Normal distribution of the sample mean – $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$

Торіс	GIVEN	LEARN
TOPIC 7: KINEMATICS	For motion in a straight line with constant acceleration: v = u + at $s = ut + \frac{1}{2}at^2$ $s = vt - \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$	For motion in a straight line with non constant acceleration $ \begin{array}{c} \hline $
		$r = u\iota + \frac{-u\iota}{2}$ (constant acceleration)

Торіс	GIVEN	LEARN
TOPIC 8: FORCES & NEWTONS LAWS		F=maProjectilesF=ma(with F and a as vectors)Time of flight = $\frac{2U\sin\alpha}{g}$ F $\leq \mu R$ Time to reach greatest height = $\frac{U\sin\alpha}{g}$ F $\leq \mu R$ Range on horizontal plane = $\frac{U^2 \sin 2\alpha}{g}$ Fmax = μR (limiting equilibrium)Equation of trajectory: $y = x \tan \alpha - gx^2 \frac{(1 + \tan^2 \alpha)}{2U^2}$

Торіс	GIVEN	LEARN
TOPIC 9: MOMENTS		Moment of Force about a point $P = Force \times perpendicular distance$