PURE OVERVIEW

Торіс	Objectives	©	:	8	Comments
	Proof by deduction				
TOPIC 1	Proof by exhaustion				
PROOF	Disproof by counter examples				
	Proof by contradiction inc proof $V2$ is irrational and the infinity of primes				

	Rules of indices		
TOPIC 2:	Expanding and factorising		
ALGEBRA & FUNCTIONS	Simplifying and manipulating surds		
	Rationalising a denominator		
	Solving by factorising		
	Completing the square – inc. co-efficient of $x^2 > 1$		
Quadratic functions	Using the quadratic formula		
Quuarutic junctions	Sketching the graphs of quadratics		
	Discriminant of a quadratic		
	Using quadratics to solve trig functions, exponential and log functions of x		
	Solving simultaneous equations by elimination and by substitution		
	Simultaneous equations, one linear one quadratic		
Equations and Inequalities	Inequalities; linear - solve algebraically and interpret graphically		
	Inequalities; quadratic - solve algebraically and interpret graphically		
	Express solutions through correct use of 'and' and 'or' or through set notation		
Sketching curves and transformations	Sketching a cubic function		
	Sketching a reciprocal function, y=1/x and y=1/x ²		

		Г	1	
	Finding points of intersection			
	Transformations of the form f(x)+a and f(x+a)			
	Transformations of the form af(x) and f(ax) – including reflections			
	Understand the modulus function and sketch graphs of the form $y= f(x) $ and $y=f(x)$.			
	Solve modulus equations			
	Sketch graphs of transformations, including combinations of more than one transformation			
	Use direct proportional relationships and their graphs			
	Manipulating polynomials			
Polynomials	Simple algebraic division			
	The Factor Theorem			
	Factorisation of a cubic			
	Simplify algebraic fractions by cancelling common factors in numerator and denominator			
	Multiply and divide algebraic fractions and simplify the answer			
	Add or subtract algebraic fractions by finding a common denominator			
Algebraic fractions	Change algebraic improper fractions into mixed number form			
, igeoraic fractions	Addition and subtraction of algebraic fractions			
	Partial fractions with linear factors			
	Partial fractions with repeated factors			
	Improper partial fractions			
	Know the terms; mapping diagrams, domain, range and complete mappings			
Fund	Understand the difference between one-to-one, many-to-one and non-functions and be able to state the range of and sketch a simple function			
Functions	Combine two or more basic functions to make a new composite function		T	
	Know how to find the inverse of $f(x)$ and recognise that the graph of the inverse is a reflection of $y=f(x)$ in the line $y=x$			
Context	Use of functions in modelling, inc considering limitations and refining the model.			

	Equation of a straight line in y=mx+c or ax+by+c=0 form		
	Gradient of a straight line		
TOPIC 3:	Equation of a straight line in y-y ₁ =m(x-x ₁) form		
COORDINATE	Conditions for lines to be parallel or perpendicular		
GEOMETRY	Geometric properties of the circle e.g. angle in semicircle, relationships with tangents, chords		
	Equation of the circle – including completing the square		
	Find equation of a circumcircle given vertices		
	Use of parametric equations in geometry		
Parametric equations	Converting from parametric to Cartesian form		
	Use parametric equations in modelling contexts		
	Find parametric equations for motion (kinematics in mechanics)		

	n th term of a sequence		
	Sequences formed by recurrence relations		
	Arithmetic sequences and series		
	Sum to n of an arithmetic series		
	Proof of the sum of the first n terms of arithmetic series		
TOPIC 4: SEQUENCES AND	Sigma (∑) notation		
SERIES	Increasing sequences, decreasing sequences and periodic sequences		
	General expression for nth term of a geometric sequence		
	Conditions for convergence and sum to infinity		
	Proof of the sum of the first n terms of a geometric series		
	Use logs to find value of n		
	Use of sequences in modelling		
	Use of Pascals triangle		
	Factorial and ⁿ C _r notation		

	Expansion of (a + bx) ⁿ expressions		
Binomial expansion	The general form of the binomial expansion and validity		
	Problems in the form (a + bx) ⁿ inc. finding approximations		
	Expanding partial fractions		

	Area of a triangle as ¹ / ₂ absinC		
	Sine and Cosine Rules		
	Graphs of sin/cos/tan including symmetry and periodicity		
	Use of x and y cords of points on the unit circle		
	Use of basic trigonometric identities		
	Solution of simple trig equations inc quadratics in sinx etc		
	Relationship between degrees and radians		
	Length of arc		
	Area of sector		
TOPIC 5:	Small angle approximations		
TRIGONOMETRY	Knowledge of the reciprocal functions secant, cosecant and cotangent including their graphs		
	Solving equations involving sec x, cosec x and cot x		
	Proving identities involving sec x, cosec x and cot x		
	Use of the three Pythagorean identities		
	Knowledge of the inverse trig functions and their graphs		
	Knowledge and use of the addition formulae		
	Knowledge, derivation and use of the double angle formulae		
	Using identities to solve equations		
	Using identities to prove identities		
	Reduction of the $acos\theta$ + $bsin\theta$ form using the addition formulae($Rcos(\theta-\alpha)$) and use of transformations with this		

	y = e ^x and its graph		
	Laws of logarithms		
	Solution of equations of the type a ^x = b		
	Know the graphs of y=a ^x and y=ln x.		
TOPIC 6:	Know that e ^x and ln x are inverse functions of each other		
EXPONENTIALS & LOGARITHMS	Manipulate exponentials and logarithms to solve equations and apply to models		
	Change of base formula		
	Realise that when rate of change is proportional to y value an exponential model should be used - Understand gradient of $y = e^{x}$		
	Linearising log graphs to estimate unknown parameters		
	Use exponential and logs in modelling, consider limitations and refinements		

	The derivative $f'(x)$ as the gradient of $y = f(x)$		
	Differentiation from first principles		
	Sketching the graph of gradient function		
	Finding the gradient function of ax ⁿ		
	Simplifying functions to enable differentiation by rule		
	Finding the second derivative		
TOPIC 7:	Finding the rate of change at a point		
DIFFERENTIATION	Finding the equation of a tangent or normal to a curve		
	Application to maxima, minima, stationary points, understand convex and concave, and points of inflection		
	Increasing and decreasing functions		
	Application to practical problems		
	Use of the chain rule		
	Use of the product rule		
	Use of the quotient rule		

Differentiating exponential and logarithmic functions		
Differentiating trigonometric functions		
Differentiating more complex functions using a combination of the above		
Parametric differentiation		
Implicit differentiation		
Differentiation of $y = a^x$		
Connected rates of change		
Solving differential equations		

	Integrating functions in the form ax ⁿ		
	Integration as the reverse process of differentiation		
	Simplifying functions to enable integration by rule		
	Finding the constant of integration		
	Evaluation of definite integrals		
	Calculation of the area under a curve		
	Calculate the area between two curves		
TOPIC 8: INTEGRATION	Recognise $\int_{a}^{b} f(x) dx = \lim_{\delta x \to 0} \sum_{x=a}^{b} f(x) \delta x$		
INTEGRATION	Estimation of area by use of the trapezium rule		
	Integration of standard functions – the standard results		
	Using trigonometric identities		
	Using partial fractions		
	Integration by substitution		
	Integration by parts		
	Parametric integration		
	Setting up and solving differential equations in context		

	Sketch graphs and use the change of sign method to locate roots		
	Understand how change of sign can fail		
	Use iterative and algebraic methods to find approximate roots of f(x)=0		
	Be able to draw associated cobweb and staircase diagrams		
TOPIC 9: NUMERICAL METHODS	Use recurrence relations $x_{n+1} = g(x_n)$		
	Know when these methods can fail		
	Solve equations with Newton Raphson method		
	Understand the working of NR and understand failure when g'(x) is small		
	Determine whether trapezium rule gives an over or under estimate		
	Check that a root is correct using error bounds		

TOPIC 10: VECTORS	Use vectors in two dimensions, be familiar with <i>i</i> , <i>j</i> and column vectors		
	Use vectors in three dimensions, familiarity with <i>i, j and k</i> and column vectors		
	Calculate the magnitude of a vector		
	Convert between component form and magnitude/direction form		
	Find unit vector		
	Add vectors on a diagram and algebraically		
	Multiply vectors by scalars		
	Show vectors are parallel, use λ and μ		
	Understand position vectors		
	Find angles between a vector and a coordinate axis		
	Use vectors to solve problems in context		